
P R O O F R E PA I R

talia ringer

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2021

Reading Committee:
Dan Grossman, Chair

Zachary Tatlock
Rastislav Bodik

Program Authorized to Offer Degree:
Computer Science & Engineering

c© Copyright 2021

Talia Ringer

University of Washington

abstract

P R O O F R E PA I R

Talia Ringer

Chair of the Supervisory Committee:
Dan Grossman

Computer Science & Engineering

The days of verifying only toy programs are long gone. The last two
decades have marked a new era of verification at scale, bringing strong
guarantees to large and critical systems—an era of proof engineering.
Proof engineering is for verified systems what software engineering is
for unverified systems. Still, while proof engineering—like software
engineering—is about both development and maintenance, most proof
engineering technologies so far have focused on development. When
it comes to maintaining these systems, proof engineering is decades
behind software engineering.

This thesis introduces proof repair: a new approach to maintain-
ing verified systems. Proof repair reimagines the automation proof
engineers typically use to interactively guide tools to search for a
machine-checked proof. When a system changes and this breaks a
proof about the system, traditional automation searches for the fixed
proof from scratch. Proof repair, in contrast, is change-aware au-
tomation: it determines how the system has changed, and uses that
information to help fix the broken proof.

Proof repair in this thesis works by combining semantic differencing
algorithms with program transformations. Importantly, both differenc-
ing and the transformations operate over low-level representations of
proofs called proof terms. Thanks to the richness of these proof terms,
differencing and the transformations can leverage new and existing
results in dependent type theory. For example, one transformation ex-
ternalizes univalent transport from homotopy type theory, leveraging
novel transformations over equalities to make this possible.

This approach is realized inside of a proof repair tool suite for the
Coq proof assistant. Case studies show both retroactively and by live
use that this proof repair tool suite can save work for proof engineers
on real proof developments.

To my family.

I love all of you.

C O N T E N T S

1 introduction 1

1.1 Developing Verified Systems 2

1.2 Thesis 2

1.3 Approach 3

1.4 Results 4

1.5 Reading Guide 6

2 motivating proof repair 9

2.1 Proof Development 10

2.2 Proof Maintenance 22

2.3 Proof Repair 26

3 proof repair by example 29

3.1 Motivating Example 29

3.2 Approach 31

3.3 Differencing 37

3.4 Transformation 40

3.5 Implementation 44

3.6 Results 53

3.7 Conclusion 59

4 proof repair across type equivalences 61

4.1 Motivating Example 62

4.2 Approach 64

4.3 Differencing 70

4.4 Transformation 85

4.5 Implementation 88

4.6 Results 97

4.7 Conclusion 104

5 related work 105

5.1 Proof Engineering 105

5.2 Program Repair 112

6 conclusions & future work 119

6.1 Future Work: Patching the Gaps of Repair 119

6.2 The Next Era: Proof Engineering for All 121

vii

A C K N O W L E D G M E N T S

I’ve always believed the acknowledgments section to be one of the
most important parts of a paper. But there’s never enough room to
thank everyone I want to thank. Now that I have the chance, though,
I’m having trouble figuring out where I should begin.

lymor In the past, when I had trouble figuring out where to begin,
I just followed my sister, Lymor. I followed her to Maryland for college,
and when I got there, she told me to do research. I had no idea
what “doing research” meant, but she told me that if I wanted to go
to graduate school, I needed to do it. Honestly, I had no idea what
graduate school was, either, but I did know it was something she was
doing, and it sounded cool. So I did research.

This is the kind of thing that I think people often don’t get to write
about in acknowledgments sections. I don’t think I could have had
the opportunity to write this if not for her. How else was I supposed
to know what research was, or that I should do it? That it would
help me get into graduate school? Draw me to the world of programs
and proofs? Instill in me the dream to become a professor? I start at
Illinois in October, and I owe a lot of that to her.

So thanks, Lymor, for being such an amazing big sister ♥♥♥.

undergraduate mentors & advisors Once I got to Mary-
land, I did research with two wonderful math professors: Kasso Okoud-
jou and Larry Washington. These experiences were fun forays into the
worlds of linear algebra and cryptology. They also helped me build
the skills I needed to succeed in graduate school.

It took a couple of years at Maryland before I found my way from
math into computer science (CS). I’m honestly thankful that I was
afraid enough of physics and statistics to instead take CS to satisfy a
breadth requirement for my math degree! But I’m also thankful that
the undergraduate math advisor Ida Chan talked me into taking the
more advanced sequence, so that it wasn’t a dead end, and I could
major in it later on. And I’m thankful that, shortly after, I had a chance
to attend the second ever Google Computer Science Summer Institute
(CSSI), where for the first time I felt empowered—so much that when
I returned to Maryland, I decided to try to minor in CS. And I’m
thankful that when I tried to minor in CS, Brandi K. Adams talked me
into picking it up as a second major instead.

So thanks, Kasso and Larry, for the wonderful research opportu-
nities. And thanks, Ida, Brandi, and everyone at Google CSSI, for
giving me the confidence to major in CS.

ix

x acknowledgments

jeff & kris A pivotal semester for me at Maryland came during
my senior year, when I took Jeff Foster’s advanced undergraduate pro-
gramming languages (PL) class (with the awesome TA Kris Micinski).
That whole class was amazing and got me super into PL. Like Jeff
spent one of the lectures talking about the Curry-Howard Correspon-
dence, which relates programs to proofs. I thought it was the coolest
thing ever, even though I didn’t really understand it that well at the
time. It must have planted a seed or something, because I kept coming
back to it again and again years later. And this thesis really gets to the
soul of Curry-Howard, treats proofs just like the programs they really
are, transforms them and evolves them over time. I’m obsessed.

Jeff is more than a great teacher, though—he’s also a really great
mentor. Like, the once-in-a-lifetime kind of mentor you’re lucky to
meet, who gives you selfless advice and helps you get to know yourself
better, who is patient and kind and teaches you all of the things you’d
have never even known to ask. It was thanks to Jeff that, one day
in 2013, I found myself at a PL conference in Seattle talking to my
eventual advisor. And it was thanks to Jeff that I knew anything at
all about how to apply to and choose a graduate school. I spoke
to Jeff every so often all throughout graduate school up to the very
end—even talking to him about the faculty job search.

So thanks, Jeff (and Kris), for your fantastic teaching, advocacy,
connections, and selfless advice over the last decade. Your students
are lucky to learn from and work with you.

industry mentors & managers During my time at Maryland,
I worked as a software engineering intern at two companies: Carr
Astronautics and Amazon. I continued to work as a software engineer
at Amazon for three years after I graduated. My adventures as a
software engineer at these two companies helped me learn to motivate
useful research problems, build good tools, and collaborate with other
people—skills that were essential to this thesis work.

At Amazon, my mentor Musachy Barroso and my manager Ernesto
Gonzalez made my experiences so much fun that it was hard to leave.
So it’s maybe not surprising that I found myself back there for a
research internship with Serdar Tasiran and Daniel Schwartz-Narbonne
later on—and that was super valuable, too.

So thanks, all of my mentors at Carr Astronautics and Amazon, for
the wonderful adventures in industry.

dan After three years at Amazon, I left to work with my advisor
Dan Grossman at the University of Washington. Dan is the best advisor.
I’m really happy that I had a chance to work with him. It was a
good work dynamic for me, since he always gave me the autonomy
that I needed to explore the problems that I love. He did help me

acknowledgments xi

push myself a few times—just only when I really, really needed to be
pushed, and never any more than I needed.

Dan is also maybe the wisest and most patient person I’ve ever met,
and I mean that. All through graduate school, he always gave me
great advice—advice that I on many occasions rejected at first because
I didn’t want to hear it. When I rejected his advice, he just kind of
patiently talked me through it. He recognized that I’m my own person,
and so accepted that sometimes I just wouldn’t listen in the end. But
I often did listen in the end. And when I did, I’d often find myself
looking back months later, thinking “oh yeah, he was right.”

This thesis is a good example of that. Dan told me many times
that I should actually put a lot of effort into this thesis, because
people actually do read these, and they can be really useful. I fought
that advice because I’d always thought of the thesis as some weird
academic hazing ritual. But this past week I’ve spoken to potential
students, and invariably I’ve ended up sending them a copy of this
thesis. It’s a really useful source of my work that has historical context
and background information. So yeah, he was right. I apologize in
advance if his future students have to read this, now.

Above all, though, it’s important to note that Dan thought of the
acronyms for three of my tools:

1. AUDACIOUS: Android User-Driven Access Control In Only
User Space,

2. PUMPKIN PATCH: Proof Updater Mechanically Passing Knowl-
edge Into New Proofs, Assisting The Coq Hacker, and

3. DEVOID: Dependent Equivalences Via Ornamenting Inductive
Definitions.

This gave me an endless stream of jokes to tap into for my research
talks all throughout graduate school.

So thanks, Dan, for the patience, wisdom, and dad jokes. I feel
ready to be a professor and a dad.1

franzi AUDACIOUS is work that Dan and I did with Franzi Roes-
ner during my first year. Franzi taught me a lot about how to write
the niche parts of research papers. It was fun.

Thanks, Franzi, for your help becoming a better researcher!

uw plse The most amazing thing about my graduate school ex-
perience was being a part of the UW PLSE lab. I didn’t realize what
an absolute blessing it was to be a part of PLSE until one day the
pandemic hit and the lab suddenly closed. If I could see everyone in
PLSE right now, I would hug all of them. What an amazing group of

1 I’m not actually going to be a dad.

xii acknowledgments

people, always there to support each other, to give feedback, to inspire
new ideas, to chat, to be just amazing friends—I love PLSE.

One of the first people that I met in PLSE was Chandrakana Nandi,
and she was there for me throughout my entire graduate school
journey. It’s not just that she gave me feedback on basically all of my
papers and talks (she did). But also, she did things like—she sent me
donuts when I was working on my PLDI paper recently. She helped
me through the hardest year of my life. She even visited me in the
hospital, once. She’s just great. The most genuine and kind friend I
could have had by my side for this journey. Really.

You know who else from PLSE is amazing? Zach Tatlock. Zach
worked with me on the survey paper, taught me Coq, and inspired
the original problem that got me interested in this thesis work. That’s
all fine and dandy, but he had to take that a step further and literally
spend an hour of his week every week for an entire year helping me
through a really hard time. Just because he’s a kind and caring person,
not because he got anything out of it. It’s not just that I wouldn’t have
made it through graduate school without Zach’s help; I honestly don’t
think I would be here today without Zach’s help.

The same goes for Alex Polozov, who overlapped with me in PLSE
for just one year, but ended up being one of the best friends I could
have ever asked for. Alex gave me really great advice when life was
really hard. Some of that advice saved my life. That’s cool; you don’t
find friends like that just anywhere.

Sarah Chasins also gave me incredible advice all throughout graduate
school; she is honestly the best listener I have ever met. My first year
mentor John Toman humored my probably very weird early graduate
school questions. My cohort—Chandra, Chenglong Wang, Amanda
Swearngin, Jared Roesch, Sam Elliott, and Bill Zorn—was so much fun to
share this journey with. My seniors—especially Sarah, Alex Polozov,
Doug Woos, James Wilcox, Stuart Pernsteiner, Konstantin Weitz, and
Joe Redmond—were such wonderful role models and friends to me
throughout this journey. My juniors—especially Max Willsey, Martin
Kellog, Alex Sanchez-Stern, Gus Smith, Ben Kushigian, Steven Lyubomirsky,
Jacob Van Geffen, Marisa Kirisame, Remy Wang, Melissa Hovik, Rashmi
Mudduluru, Sorawee Porncharoenwase, and Krzysztof Drewniak—helped
me so much throughout, too. Ras Bodik joined Dan and Zach on my
reading committee for this thesis. PLSE alumnus Adrian Sampson sent
me the source files for this beautiful thesis format.

Above all, though, my students and research mentees—Jasper Hugunin,
Taylor Blau, RanDair Porter, and Nate Yazdani—brought so much light
and joy to my graduate school experience. They are the reason I’m so
excited to become a professor.

So thank you so much to every person I’ve ever overlapped with in
UW PLSE. I miss all of you, and I wish all of you nothing but joy and
success for the rest of your lives. Please come visit me in Illinois!

acknowledgments xiii

friends Outside of PLSE, I’m really lucky to have met some amaz-
ing graduate school friends I can’t imagine my life without. Not a
day will pass when I won’t miss Roy Or-El, Vikram Iyer, and Esther
Jang—they were always there by my side when I needed them most,
and were always so wonderful and supportive and caring and under-
standing. And I’m thankful to have met Anna Kornfeld Simpson, Anne
Spencer Ross, Karl Koscher, Dhruv Jain, and Jasper Tran O’Leary.

I spent the better part of a year during graduate school in San Diego,
with the UCSD ProgSys lab. Let me tell you, that lab gives PLSE a
run for its money. Everyone in ProgSys made that year super fun and
valuable, as did Marcela Mendoza, Misha Kolmogorov, and Grace Uchida.

My Dance Dance Revolution friends (yes, that’s a thing) helped me
forget about graduate school when I needed that; I’m especially lucky
to know Laura Chick, Ezgi Akgül, Chris Maines, and Melanie Walker.
My Club Northwest teammates—and especially my coach, Tom Cotner—
gave me a healthy escape in a wonderful environment, as did my Race
Condition Running (RCR) running buddies. My cousin David Lasky,
my friend Wade Gordon, and everyone I met at Chabad of Queen Anne
gave me a local support network in Seattle. My childhood best friend
Danielle Antosh and my high school best friend Erica Iantuono always
supported me from across the country, no matter how much time
passed. Esther, Ellie Berry, Mer Joyce, and above all Qi Cheng brought
so much light to a dark pandemic year.

So thank you so much to all of my friends, Club Northwest team-
mates, RCR running buddies, and everyone else who has been there
for me these past six years. Nothing but love to all of you.

community The Coq community has given me so, so much feedback
through every step of this process, especially Matthieu Sozeau, Yves
Bertot, Nicolas Tabareau, Jason Gross, Cyril Cohen, Tej Chajed, Emilio J.
Gallego Arias, Enrico Tassi, Gaëtan Gilbert, Maxime Dénès, Vincent Laporte,
Théo Zimmermann, Pierre-Marie Pédrot, Ben Delaware, Janno, Valentin
Robert, and Robert Rand. I am very lucky to be part of such a wonderful
international research community, and I am looking forward to more
trips to France once international trips resume.

The broader PL community has also been amazing. Carlo Angiuli,
Anders Mörtberg, Conor McBride, and Michael Shulman really, really
helped me navigate some of the more beautiful and challenging type
theory that shows up in this thesis. Ideas from Matthew Dwyer and
Matt Might are in the future work section of this thesis. Bas Spitters,
Jon Sterling, Bob Harper, Edward Z. Yang, and James Decker all helped
me with thesis-related work at some point. Gerwin Klein shepherded
my final thesis-related paper, and did a really wonderful job. Jonathan
Aldrich, David van Horn, Michael Hicks, Emery Berger, Kenny Foner,
Alexandra Silva, Lindsey Kuper, Nate Foster, Stephanie Weirich, and many

xiv acknowledgments

others helped me give back to the community, and helped me when I
needed guidance too. My mentor Derek Dreyer has been amazing.

The CS Twitter community—and especially the PL Twitter community—
has not just been supportive, but has also directly contributed to
my thesis work. I often take to Twitter to ask people to try out
proof exercises related to my tools, or to brainstorm fun future work
ideas, or to ask type theory questions, or to look for related work.
Twitter followers Nathanael and Quinn Wilton thought of some of the
medical devices that show up in the future work section of this thesis.
Hillel Wayne offered to send me food as I wrapped up this section.
Rebecca Turner showed me how to use the knowledge package that
lets me highlight words, like Rebecca, and have them link to indexed
definitions. Ymir Vigfusson, Benjamin Lipp, and Daniel-Nikpayuk found
typos in screenshots I Tweeted. Dionna Glaze, Jana Dunfield, and Amarin
Phaosawasdi also sent feedback. And Michelle Lee did a writing buddy
log with me that motivated me to finish this thesis. Many others on
Twitter—thousands of people—helped me over the last few years.

So thanks, everyone in the wonderful Coq community, and in the
PL community more broadly. And thanks to everyone on Twitter,
especially PL Twitter. You are all amazing people.

belle Belle is the best puppy. I cuddled with her early pandemic
every night after work.

I love you, Belle, you cutie.

grandpa, saba, & savta In loving memory of Grandpa. I hope
he would be proud. I never got to meet Grandma, but I hope she
would be proud, too.

In loving memory of Saba, the most inspiring person in the world. I
wish he’d stayed around for this, so I could explain my thesis work to
him. I bet he’d understand it and enjoy it.

With all of my love for Savta, who makes sure I never go hungry
or cold. And who, even if I’m not hungry or cold, makes sure I still
know that she’s worried I might be hungry or cold, and makes sure to
feed me and tell me to wear a jacket anyways.

I miss you, Grandpa, and wish I could tell you what I’m up to now.
I miss you, Saba, and wish I could share this thesis with you. Savta:

mom & dad I have the most amazing, supportive, and loving
parents in the world. They’re the reason I’m eating lunch as I write this.
I can’t imagine what graduate school would have been like without
their constant unwavering support—or without their frequent gifts of
coffee and food.

I love you so much, Mom & Dad.

1
I N T R O D U C T I O N

What would it take to empower programmers of all skill levels across
all domains to formally prove the absence of costly or dangerous bugs
in software systems—that is, to formally verify them?

Verification has already come a long way toward this since its
inception. This is especially true when it comes to the scale of systems
that can be verified. The seL4 [89] verified operating system (OS)
microkernel, for example, is the result of a team effort spanning more
than a million lines of proof, costing over 20 person-years. Given a
famous 1977 critique of verification [51] (emphasis mine):

A sufficiently fanatical researcher might be willing to devote
two or three years to verifying a significant piece of software
if he could be assured that the software would remain
stable.

I could argue that, over 40 years, either verification has become easier,
or researchers have become more fanatical. Unfortunately, not all has
changed (emphasis still mine):

But real-life programs need to be maintained and modi-
fied. There is no reason to believe that verifying a modified
program is any easier than verifying the original the first
time around.

This remains so difficult that sometimes, even experts give up in the
face of change (Section 2.2.2).

This thesis aims to change that by taking advantage of a missed
opportunity: tools for developing verified systems (Section 1.1) have
no understanding of how these systems evolve over time, so they
miss out on crucial information. This thesis introduces a new class of
verification tools called proof repair tools (Section 1.2) that understand
how software systems evolve, and use the crucial information that
evolution carries to automatically evolve proofs about those systems
(Section 1.3). This gives us reason to believe (Section 1.4).

1

2 introduction

1.1 developing verified systems

Proof repair falls under the umbrella of proof engineering: the tech-
nologies that make it easier to develop and maintain verified systems
(Section 5.1). Much like software engineering scales programming to
large systems, so proof engineering scales verification to large systems.
In recent years, proof engineers have verified OS microkernels [89, 88],
machine learning systems [146], distributed systems [168], constraint
solvers [21], web browser kernels [82], compilers [98, 99, 93], file sys-
tems [28, 31, 30], and even a quantum optimizer [77]. Practitioners
have found verified systems to be more robust and secure in deploy-
ment (Chapter 2).

Proof engineering focuses in particular on verified systems that have
been developed using special tools called proof assistants. Examples
of proof assistants include Coq [38], Isabelle/HOL [81], HOL Light [78],
HOL4 [117], Agda [7], Lean [97], and NuPRL [123]. The proof assistant
that I focus on in this thesis will be the Coq proof assistant. A
discussion of how this work carries over to other proof assistants is in
Chapters 5 and 6.

To develop a verified system using a proof assistant like Coq, the
proof engineer does three things:

1. implements a program,

2. specifies what it means for the program to be correct, and

3. proves that the program satisfies the specification.

This proof assistant then automatically checks this proof with a small
trusted part of its system called the kernel [16, 17]. If the proof is
correct, then the program satisfies its specification—it is verified.

1.2 thesis

The challenge this thesis addresses is that programs and specifications
change all of the time—and these changes can break many proofs. For
example, a proof engineer who optimizes an algorithm may change
the program, but not the specification; a proof engineer who adapts
an OS to new hardware may change both. Even a small change to a
program or specification can break many proofs, especially in large
systems. Changing a verified library, for example, can break proofs
about a program that depends on that library—and that breaking
change can be outside of the proof engineer’s control.

In response to this challenge, this thesis introduces proof repair. Proof
repair automatically fixes broken proofs in response to changes in
programs and specifications. In other words, proof repair views these
broken proofs as bugs that a tool can patch. In doing so, it shows that
there is reason to believe that verifying a modified system should

1.3 approach 3

Figure 1: An illustration of the typical interactive workflow of using
the Coq proof assistant to write a proof. The checkmark at
the end represents correctness of the proof, which is commu-
nicated back to the proof engineer in the end.

often, in practical use cases, be easier than verifying the original the
first time around, even when the proof engineer does not follow good
development processes, or when change occurs outside of the proof
engineer’s control. More formally:

Thesis: Changes in programs, specifications, and proofs
can carry information that a tool can extract, generalize,
and apply to fix other proofs broken by the same change. A
tool that automates this can save work for proof engineers
relative to reference manual repairs in practical use cases.

1.3 approach

My approach to proof repair operates over a low-level representation
of proofs, one that carries useful structure and information. But that
very structure can make it challenging for proof engineers to write
proofs in that low-level representation to begin with, which is why
proof engineers typically do not interact with it directly. Instead, proof
engineers typically write proofs in a high-level representation.

Consider the typical proof engineering workflow in Coq (Figure 1).
This workflow is interactive: To write a proof, the proof engineer
passes Coq high-level search procedures called tactics (like induction),
and Coq responds to each tactic by refining the current goal to some
subgoal (like the goal for the base case). This loop of tactics and goals
continues until no goals remain, at which point the proof engineer has
constructed a sequence of tactics called a proof script—the high-level
representation. To check the proof, Coq compiles that proof script
down to a low-level representation called a proof term, then uses its

4 introduction

kernel to check that the proof term has the expected type. If the term
has the expected type, Coq lets the proof engineer know in the end.

One major challenge for a proof repair tool is that it is not clear how
to extract and generalize changes and apply them to fix proofs just by
looking at the changes in high-level proof scripts that proof engineers
make. The high-level language of tactics can abstract away important
details of these changes. But the low-level language of proof terms
can be brittle and challenging to work with. Crucially, though, the
language is brittle and challenging precisely because it carries so much
structure and gives such strong guarantees—two things that are very
useful to a proof repair tool.

My approach to proof repair takes advantage of the structure and
guarantees of the low-level language of proof terms, but produces
something in the high-level language of proof scripts for proof engi-
neers in the end. In particular, it uses semantic differencing algorithms
over proof terms to extract information from a breaking change in a
program, specification, or proof. It then combines those with program
transformations over proof terms—called proof term transformations—
to generalize and, in some cases, apply that information to fix other
proofs broken by the same change. In the end, it uses a prototype
decompiler to get from the low-level language back up to the high-
level language, so that proof engineers can continue to work in that
language going forward.

By working over the low-level language of proof terms, my approach
to proof repair is able to systematically and with strong guarantees
extract and generalize the information that breaking changes carry,
then apply those changes to fix other proofs broken by the same
change. But by later building up to the high-level language of proof
scripts, my approach can in the end produce proofs that integrate
more naturally with proof engineering workflows.

1.4 results

This thesis is divided into six chapters; chapters are further divided
into sections. After motivating proof repair (Chapter 2), this thesis
describes two different kinds of proof repair that validate the thesis:
by example (Chapter 3) and across equivalences (Chapter 4). It concludes
with a discussion of related work (Chapter 5), followed by a reflection
on the thesis and how the results can inform the next era of proof
engineering (Chapter 6).

The technical results of this thesis are threefold:

1. the design of semantic differencing algorithms & proof term
transformations for repair (Sections 3.2, 3.3, 3.4, 4.2, 4.3, and 4.4),

2. an implementation of these algorithms and transformations inside
of a proof repair tool suite (Sections 3.5 and 4.5), and

1.4 results 5

3. case studies to evaluate the tool suite on real proof repair scenarios
(Sections 3.6 and 4.6).

Viewing the thesis statement as a theorem, the proof is as follows:

Changes in programs, specifications, and proofs can carry
information that a tool can extract, generalize, and apply to
fix other proofs broken by the same change (by design and
implementation). A tool that automates this can save work
for proof engineers relative to reference manual repairs in
practical use cases (by case studies).

design The design describes semantic differencing algorithms to
extract information from breaking changes in verified systems, along
with proof term transformations to generalize and apply the infor-
mation to fix proofs broken by the change. The semantic differencing
algorithms compare the old and new versions of a changed term or
type, and from that find a diff that describes the change. The transfor-
mations then use that diff to transform some term to a more general
fix. The details vary by the class of change supported. The design of
these differencing algorithms and transformations is guided heavily
by foundational developments in dependent type theory; the theory is
sprinkled throughout as appropriate.

implementation The implementation shows that in fact a tool
can extract and generalize the information that changes carry, and then
apply that information to fix other proofs broken by the same change.
This implementation comes in the form of a proof repair tool suite
for Coq called Pumpkin Patch (Proof Updater Mechanically Passing
Knowledge Into New Proofs, Assisting the Coq Hacker). Pumpkin

Patch is a suite of Coq plugins: extensions to Coq implemented in
OCaml that can add new automation and syntax, and can define new
terms. Notably, since all terms that plugins produce are checked by
Coq in the end, Pumpkin Patch does not extend the Trusted Computing
Base (TCB): the set of unverified components that the correctness of
the proof development depends on [136]. In total, Pumpkin Patch is
about 15000 lines of code, consisting of three plugins and a library
that together bridge the gap between the theory supported by design
and the practical proof repair needed for the case studies.

case studies The case studies show that Pumpkin Patch can save
work for proof engineers relative to reference manual repairs in prac-
tical use cases. In particular, the case studies in Chapter 3 show
retroactively that a prototype implementation of proof repair by ex-
ample could have saved work for proof engineers on major proof
developments. The case studies in Chapter 4 show that proof repair
across type equivalences can save and in fact has already saved work
for proof engineers in practical use cases.

6 introduction

1.5 reading guide

This thesis assumes some background in proof engineering, type
theory, and (to a lesser extent) the Coq proof assistant. I strongly
encourage readers of all backgrounds who would like more context
to better understand this thesis look to my survey paper on proof
engineering [136], which includes a detailed list of resources and is
available for free on my website: https://dependenttyp.es.

I recommend that readers with less background on proof engineer-
ing, dependent type theory, or Coq take time to digest Chapter 2

before moving on—though I recommend that even Coq experts read
Chapter 2! Chapters 3 and 4 get rather technical, so it is normal not to
understand every detail. You may always contact me with questions.

Previously Published Material

While this thesis is self-contained, it centers material from two previ-
ously published papers:

• Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman.
Adapting Proof Automation to Adapt Proofs [140]. Certified Pro-
grams and Proofs. 2018.

• Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and
Dan Grossman. Proof Repair across Type Equivalences [137]. Pro-
gramming Languages Design and Implementation. 2021.

It also includes material from three other papers:

• Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman.
Ornaments for Proof Reuse in Coq [141]. Interactive Theorem
Proving. 2019.

• Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin
Lerner. REPLica: REPL Instrumentation for Coq Analysis [138].
Certified Programs and Proofs. 2020.

• Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and
Zachary Tatlock. QED at Large: A Survey of Engineering of Formally
Verified Software [136]. Foundations and Trends R© in Program-
ming Languages: Vol. 5: No. 2-3, pp 102-281. 2019.

The following is a map from each of these papers to corresponding
sections, along with an explanation of what is new in this thesis and
what is omitted. All of these papers are free on my website.

https://dependenttyp.es

1.5 reading guide 7

Adapting Proof Automation to Adapt Proofs: The bulk of Chapter 3

comes from this paper, though the content is significantly reorganized
and reframed. The introduction and conclusion of Chapter 3 are fresh.
Sections 3.2, 3.3, 3.4, and 3.5 include content beyond the original paper.
Chapter 5 includes some related work from this paper, and Chapter 6

includes some future work from this paper.

Proof Repair across Type Equivalences: Parts of the introduction and
Section 2.1.2 come from this paper. The bulk of Chapter 4 comes from
this paper, though the content is likewise reorganized and reframed.
The conclusion of Chapter 4 is fresh. Sections 4.2, 4.3, 4.4, and 4.5 all
include content beyond the original paper. Chapter 5 includes some
related work from this paper, and Chapter 6 includes some future
work from this paper.

Ornaments for Proof Reuse in Coq: The example from Section 2.1
comes from this paper, though most of the text is new. Parts of
Section 2.1.2 also come from this paper. Section 4.3 shows a simplified
version of the differencing algorithm (originally called the search
algorithm) from this paper. Section 4.6.2 includes the evaluation from
this paper with additional context. Chapter 5 includes related work
from this paper. This thesis retires the name of the tool from this
paper (Devoid) in favor of the name of the generalized version of the
tool from Proof Repair across Type Equivalences (Pumpkin Pi).

REPLicaREPLicaREPLica: Section 2.2.2 includes a few samples of this paper, and the
abstract includes a few sentences from this paper.

QED at Large: Chapter 2 includes a few samples of this survey paper.
Chapter 5 includes a large amount of related work from this paper.

Authorship Statements

The material in this thesis draws on work that I did with four stu-
dent and postdoctoral coauthors: Nathaniel Yazdani, RanDair Porter,
Alex Sanchez-Stern, and Karl Palmskog. Below is a summary of the
contributions of each of those coauthors, indexed for later reference.
The contributions of my faculty and professional coauthors—John Leo,
Dan Grossman, Zach Tatlock, Ilya Sergey, Milos Gligoric, and Sorin
Lerner—were of course also extremely valuable:

nathaniel yazdani I worked with Nate starting from when he
was an undergraduate student. He contributed conceptually to all
three proof repair papers his name appears on, helped with a number
of the case studies, implemented important features on the critical
path to success, and did some of the writing about his contributions.
His contributions include:

8 introduction

1. a tool for preprocessing proof developments into a format suit-
able for repair,

2. higher-order transformations for applying proof term transfor-
mations over entire libraries, and

3. a key early insight about equality.

All three of these were necessary to scale proof repair to help real
proof engineers in practical scenarios.

randair porter RanDair joined the project as an undergraduate.
He implemented a prototype decompiler from proof terms to proof
scripts, and wrote a description of the behavior of the decompiler that I
built on in the corresponding paper. This decompiler was necessary for
integrating proof repair tools with real proof engineering workflows,
and it continues to inspire exciting work.

alex sanchez-stern Alex worked with me as a PhD student
on the REPLicaREPLicaREPLica user study of proof engineers. He designed, imple-
mented, and evaluated one of the two analyses in the user study paper.
He also helped substantially in building the infrastructure necessary
to deploy the user study, and wrote large sections of the paper. The
user study and paper would not have happened without him.

karl palmskog Karl was a postdoctoral researcher when he joined
me on the QED at Large survey paper. He wrote entire chapters of
the survey paper. I could not have written that paper without him.

Pronouns

In this thesis, I use “I” to refer to work that I did, even though
of course no work happens in a vacuum. I use the names of my
coauthors like “Nate” or “RanDair” to refer to work that they did,
when I operated primarily in an advisory role. When I collaborated
with my coauthors, I name them and myself, like “Nate and I,” and
then (when not ambiguous) I use “we” thereafter. Throughout, I also
use mathematical “we” to mean both myself and the reader.

When I discuss a rhetorical proof engineer who does not actually
exist, like “the proof engineer,” I always use “she”—this is a small
attempt to seed the world with data that counteracts stereotypes.
When preserving anonymity of a particular person, I always use
singular “they.” Otherwise, I use the person’s pronouns.

Historical Note

At the time of writing, the Coq community is considering renaming
the Coq proof assistant. There is a chance that the name of the proof
assistant will be different for future readers.

2
M O T I VAT I N G P R O O F R E PA I R

This thesis describes techniques and tools for automatically repairing
broken proofs in a proof assistant. It focuses in particular on proofs
about formally verified programs, though many of the techniques
and tools carry over to mathematical proofs as well.

why verify programs? Formal verification of a program can
improve actual and perceived reliability. It can help the programmer
think about the desired and actual behavior of the program, perhaps
finding and fixing bugs in the process [116]. It can make explicit which
parts of the system are trusted, and further decrease the burden of
trust as more of the system is verified.

One noteworthy program verification success story is the Com-
pCert [98, 99] verified optimizing C compiler. Both the back-end and
front-end compilation passes of CompCert have been verified, ensur-
ing the correctness of their composition [85]. CompCert has stood up
to the trials of human trust: it has been used, for example, to compile
code for safety-critical flight control software [58]. It has also stood up
to rigorous testing: while the test generation tool Csmith [170] found
79 bugs in GCC and 202 bugs in LLVM, it was unable to find any bugs
in the verified parts of CompCert.

CompCert, however, was not a simple endeavor: the original de-
velopment comprised approximately 35000 lines of code; functional-
ity accounted for only 13% of this, while specifications and proofs
accounted for the other 87%. This is not unusual for large proof devel-
opments. The initial correctness proofs for the seL4 OS microkernel,
for example, consisted of 480000 lines of specifications and proofs [88].
Proof engineering technologies make it possible to develop verified
systems at this scale. See QED at Large for a comprehensive overview
of proof engineering.

why repair proofs? Proof repair—the focus of this thesis—is
a new proof engineering technology that focuses in particular on
minimizing the burden of change as verified systems evolve over time.
But for the sake of this chapter, I motivate proof repair not on a large
verified system like a C compiler or an OS microkernel. Instead,
I motivate it on a simple proof development: a list zip function

9

10 motivating proof repair

accompanied by a formal proof that it preserves the lengths of its
inputs. This is a small example, but it is worth noting that large proof
developments like compilers and OS microkernels are often made up
of many of these small examples built on top of each other.

The proof assistant that I motivate this on is Coq, since this is the
proof assistant that this thesis focuses on. I motivate proof repair in
Coq using the small list zip example in three parts:

1. the workflow of and theory beneath proof development
(Section 2.1),

2. some challenges of and approaches to proof maintenance
(Section 2.2), and

3. the motivation for and approach to proof repair that follow
(Section 2.3).

I will refer to the example and theory introduced in this chapter in
later chapters, so it is good to at least skim this chapter regardless of
Coq experience.

2.1 proof development

Before I motivate proof maintenance and repair, it helps to understand
proof development to begin with. In the introduction, I briefly explained
the workflow for using a proof assistant to develop a verified system,
noting that the proof engineer:

1. implements a program,

2. specifies what it means for the program to be correct, and

3. proves that the program satisfies the specification.

In the Coq proof assistant, proof engineers implement programs in
a rich functional programming language called Gallina. In fact, it is
possible to use Gallina to write the program, the specification, and the
proof—but writing the proof in Gallina can be challenging. Instead,
proof engineers typically use Gallina to write only the program and
specification, and write the proof interactively. I alluded to this when
I explained the typical proof development workflow in Coq:

To write a proof, the proof engineer passes Coq high-level
search procedures called tactics (like induction), and Coq
responds to each tactic by refining the current goal to some
subgoal (like the goal for the base case). This loop of tactics
and goals continues until no goals remain, at which point
the proof engineer has constructed a sequence of tactics
called a proof script—the high-level representation. To

2.1 proof development 11

zip {T1 T2} (l1 : list T1) (l2 : list T2) : list (T1 * T2) :=
match l1, l2 with
| nil, _ => nil
| _, nil => nil
| cons t1 tl1, cons t2 tl2 => cons (t1, t2) (zip tl1 tl2)
end.

Figure 2: The list zip function, taken from an existing proof develop-
ment [149]. The curly brace notation means that the type
parameter T is implicit in applications.

check the proof, Coq compiles that proof script down to
a low-level representation called a proof term, then uses
its kernel to check that the proof term has the expected
type. If the term has the expected type, Coq lets the proof
engineer know in the end.

The low-level language of proof terms in Coq is Gallina—the same
rich functional programming language proof engineers use to write
programs and specifications. The high-level language of proof scripts
in Coq is a language called Ltac that I will soon describe.

In this thesis, I will not teach you all of Coq.1 What I will do is
motivate this workflow on an example (Section 2.1.1) and explain the
theory beneath (Section 2.1.2).

2.1.1 The Workflow

For a moment, let us assume some primitives from the Coq standard
library: the type nat of natural numbers, the type list of polymorphic
lists, and the length function that computes the length of a list as a
natural number. We will start by writing the list zip program, then
specify what it means to preserve its length, and then finally write an
interactive proof that shows that specification actually holds. In the
end, Coq will check this proof and let us now that our proof is correct,
so our zip function is verified.

program Let our program be the list zip function, written in Gal-
lina in Figure 2. The list zip function takes as arguments two lists l1

and l2 of possibly different types T1 and T2, and zips them together
into a list of pairs (T1 * T2). For example, if the inputs are a list of
numbers and a list of characters, like:

l1 := cons 1 (cons 2 (cons 3 (cons 4 nil))).(* [1; 2; 3; 4] *)
l2 := cons "x" (cons "y" (cons "z" nil)).(* ["x"; "y"; "z"] *)

1 Good resources for learning more about Coq include the books Certified Program-
ming with Dependent Types [32] and Software Foundations [132], and the survey
paper QED at Large.

12 motivating proof repair

(* Weaker version of theorem *)
Theorem zip_preserves_length {T1 T2} :
∀ (l1 : list T1) (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1.

(* Stronger version of theorem *)
Theorem zip_preserves_length {T1 T2} :
∀ (l1 : list T1) (l2 : list T2),
length (zip l1 l2) = min (length l1) (length l2).

Figure 3: Two possible specifications of a proof that zip preserves the
length of the input lists.

then zip applied to those two lists returns a list of number-character
pairs, like:

(* [(1, "x"); (2, "y"); (3, "z")] *)
cons (1, "x") (cons (2, "y") (cons (3, "z") nil)).

It is worth noting that the implementation of zip has to make
some decision about how to behave when the input lists are different
lengths—that is, what to do with the extra elements, like the extra 4 at
the end of l1. The decision that this implementation makes is to just
ignore those extra elements.

Otherwise, the implementation is fairly standard. If l1 is empty or,
in other words, nil (first case), or if l2 is nil (second case), then zip
returns nil. Otherwise, zip combines the first two elements of each
list into a pair (t1, t2), then sticks that in front of (using cons) the
result of recursively calling zip on the tails of each list (zip tl1 tl2).

specification Once we have written our zip function, we can
then specify what we want to prove about it: that the zip function
preserves the lengths of the inputs l1 and l2. We do this by defining a
type zip_preserves_length (Figure 3, top), which in Coq we state as a
Theorem.2 This theorem takes advantage of Gallina’s rich type system
to quantify over all possible input lists l1 and l2. It says that if the
lengths of the inputs are the same, then the length of the output is the
same as the lengths of the inputs. Our proof will soon show that this
type is inhabited, and so this statement is true.

It is worth noting that this step of choosing a specification is a
bit of an art—we have some freedom when we choose our speci-
fication. We could just as well have chosen a different version of
zip_preserves_length (Figure 3, bottom) that states that the length of
the output is the minimum of the lengths of the inputs (using min from
the Coq standard library). This is also true for our zip implementation,
and in fact it is stronger—it implies the original theorem as well. But

2 We can also call this a Lemma if we’d like; these are equivalent in Coq.

2.1 proof development 13

regardless of which version we choose, we then get to the fun part of
actually writing our proof.

proof As I mentioned earlier, it is possible to write proofs directly
in Gallina—but this can be difficult. Instead, it is more common to
write proofs interactively using the tactic language Ltac. Each tactic
in Ltac is effectively a search procedure for a proof term, given the
context and goals at each step of the proof. The way that this works is,
after we state the theorem that we want to prove, say:

Theorem zip_preserves_length {T1 T2} :
∀ (l1 : list T1) (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1.

we then add one more word:

Proof.

then step down past that word inside of an Integrated Development
Environment (IDE). The IDE then drops into an interactive proof mode.
In that proof mode, it tracks the context of the proof so far, along with
the goal we want to prove. After each tactic we add and step past, Coq
responds by refining the goal into some subgoal and updating the
context. We continue this until no goals remain. The QED at Large
survey paper has a good overview of tactic languages in Coq and in
other proof assistants, plus different interfaces and IDEs for writing
proofs interactively, and screenshots of those interfaces in action.

In this case, after stepping past Proof in our IDE, our initial context
(above the line) is empty, and our initial goal (below the line) is the
original theorem:

______________________________________(1/1)
∀ (l1 : list T1) (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1.

We can start this proof with the introduction tactic intros:

intros l1.

This is essentially the equivalent of the natural language proof strategy
“assume arbitrary l1.” That is, it moves the universally quantified
argument from our goal into our context:

l1 : list T1
______________________________________(1/1)
∀ (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1.

From this state, we can induct over the input list (choosing names for
variables Coq introduces in the inductive case):

induction l1 as [|t1 tl1 IHtl1].

14 motivating proof repair

This breaks into two subgoals and subcontexts: one for the base case
and one for the inductive case.

The base case:

______________________________________(1/2)
∀ (l2 : list T2),
length nil = length l2 →
length (zip nil l2) = length nil.

holds by reflexivity, which the auto tactic takes care of.
In the inductive case:

t1 : T1
tl1 : list T1
IHtl1 :
∀ (l2 : list T2),
length tl1 = length l2 →
length (zip tl1 l2) = length tl1

______________________________________(2/2)
∀ (l2 : list T2),
length (cons t1 tl1) = length l2 →
length (zip (cons t1 tl1) l2) = length (cons t1 tl1).

we again use intros and induction, this time to induct over l2. This
again produces two subgoals: one for the base case and one for the
inductive case. The base case has an absurd hypothesis, which we
introduce as H and then use auto to show that it implies our conclusion
holds. The inductive case holds by simplification and rewriting by the
inductive hypothesis IHtl1.

After this, no goals remain, so our proof is done; we can write
Defined.3 What happens when we write Defined is that Coq compiles
the proof script we have just written down to a proof term. Coq’s
kernel then checks that the type of this term is the theorem we have
stated. Since it is, Coq lets us know that our proof is correct, so our
zip function is verified.

Figure 4 shows the resulting proof script for this theorem (top),
along with the corresponding proof term (bottom). As we can see,
the proof term is quite complicated—I will explain what it means
soon, in Section 2.1.2. The important thing to note for now is that the
details of this low-level proof term do not matter much to us as proof
engineers, since we can write the high-level proof script on the top
instead. Even though this proof script is still a bit manual (for the sake
of demonstration), it is much simpler than the low-level proof term.

Writing proofs using tactics does indeed make proof development
easier than writing raw proof terms. But these highly structured proof
terms carry a lot of information that is lost at the level of tactics. It
is exactly that rich structure—the type theory beneath Gallina—that
makes a principled approach to proof repair possible.

3 We can also write Qed. There is a subtle difference between the behavior of Defined
and Qed that does not matter for the sake of this thesis; I usually favor Defined.

2.1 proof development 15

Theorem zip_preserves_length {T1 T2} :
∀ (l1 : list T1) (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1.

Proof.
intros T1 T2 l1. induction l1

1 as [|t1 tl1 IHtl1].
- auto.2
- intros l2. induction l23 as [|t2 tl2 IHtl2].
+ intros H. auto.4
+ intros H. simpl. rewrite IHtl1; auto.5

Defined.

zip_preserves_length :
∀ {T1} {T2} (l1 : list T1) (l2 : list T2),
length l1 = length l2 →
length (zip l1 l2) = length l1

:=
fun (T1 T2 : Type) (l1 : list T1) (l2 : list T2) =>
list_rect1 (fun (l1 : list T1) => . . .)
(fun (l2 : list T2) _ => eq_refl)2
(fun (t1 : T1) (tl1 : list T1) (IHtl1 : . . .) (l2 : list T2) =>
list_rect3 (fun (l2 : list T2) => . . .)
(fun (H : . . .) => eq_sym H)4
(fun (t2 : T2) (tl2 : list T2) (IHtl2 : . . .) =>
fun (H : . . .) => eq_rect_r . . . eq_refl (IHtl1 . . .)5)

l2
3)

l1
1

l2.

Figure 4: An Ltac proof script (top) and a corresponding Gallina
proof term (bottom) in Coq that shows that the list zip
function preserves the lengths of the input lists. Some details
of the proof term are omitted for simplicity. Corresponding
parts are highlighted in the same color and annotated with
the same number; the rest is boilerplate.

16 motivating proof repair

Inductive nat :=
| O : nat1
| S : nat → nat2.

nat_rect :
∀ (P : nat → Type),
P O1 →
(∀(n : nat), P n → P (S n))2 →
∀ (n : nat), P n.

Figure 5: The type of natural numbers nat in Coq defined inductively
by its two constructors (left), and the type of the correspond-
ing eliminator or induction principle nat_rect that Coq gen-
erates (right).

2.1.2 The Theory Beneath

Now that we have written a small proof development in Coq, let us
take a step back and look at the theoretical foundations that make this
possible. While proof scripts help humans like us write proofs, it is
thanks to the proof terms these compile down to that Coq is able to
check our proofs for us. These proof terms are in the rich functional
programming language Gallina (Section 2.1.2.1). Gallina implements
a rich type theory called the Calculus of Inductive Constructions (Sec-
tion 2.1.2.2). This rich type theory makes it possible to write programs,
specifications, and proofs in Coq, and have a small part of Coq—the
kernel—check those proofs in the end.

2.1.2.1 Gallina

To see the power of Coq’s proof term language Gallina, let us dissect
our proof that zip preserves its length. Our proof development about
zip uses the nat and list datatypes, as well as the length function.
It also uses the equality type =. All of these can be found inside of
the Coq standard library. But dissecting them already points to two
important features of Gallina: inductive types and intensionality. Both
of these arise in our proof development, and will continue to arise
throughout this thesis.

inductive types Each of nat and list in Gallina is what is called
an inductive type. An inductive type is defined by its constructors: the
ways of constructing a term with that type. A nat (Figure 5, left), for
example, is either 0 or the successor S of another nat; these are the
two constructors of nat.

Every inductive type in Gallina comes equipped with an eliminator
(also called an induction principle) that the proof engineer can use
to write functions and proofs about the datatype. For example, the
eliminator for nat (Figure 5, right) is the standard induction principle

2.1 proof development 17

Inductive list {T : Type} :=
| nil : list T1
| cons :

T → list T → list T.2

list_rect {T : Type} :
∀ (P : list T → Type),
P nil1 →
((∀(t : T) (tl : list T),
P tl → P (cons t tl))2 →
∀ (l : list T), P l.

Figure 6: The type of polymorphic lists list in Coq defined induc-
tively by its two constructors (left), and the type of the
corresponding eliminator or induction principle list_rect
that Coq generates (right).

Fixpoint length {T} l :=
match l with
| nil => O1
| cons t tl =>

S (length tl)2
end.

Definition length {T} l :=
list_rect T (fun _ => nat)
O1
(fun t tl (length_tl : nat) =>
S length_tl)2

l.

Figure 7: The list length function, defined by pattern matching and
recursion (left) and using the eliminator list_rect (right).

for natural numbers, which Coq calls nat_rect.4 This eliminator states
that a statement P (called the inductive motive) about the natural
numbers holds for every number if it holds for O in the base case and,
in the inductive case, assuming the inductive hypothesis that it holds
for some n, it also holds for the successor S n.

A list (Figure 6, left) is similar to a nat, but with two differences:
list is polymorphic over some type T (so we can have a list of natural
numbers, for example, written list nat), and the second constructor
adds a new element of the type T to the front of the list. Otherwise,
list also has two constructors, nil and cons, where nil represents
the empty list, and cons sticks a new element in front of any existing
list. Similarly, the eliminator for list (Figure 6, right) looks like
the eliminator for nat, but with an argument corresponding to the
parameter T over which list is polymorphic, and with an additional
argument corresponding to the new element in the inductive case.

One interesting thing about the types of these eliminators list_rect
and nat_rect is that they include universal quantification over all
inputs, written ∀ . Gallina’s type system is expressive enough to
include universal quantification over inputs, as we will soon see.

We can use these eliminators to write not just proofs, but also
functions, like the length function (Figure 7, right). For functions,
though, it is more standard to instead use pattern matching and

4 For technical reasons that are not important to this thesis, Coq actually defines three
eliminators: nat_rect, nat_rec, and nat_ind. For the sake of this thesis, it is
sufficient to imagine that these are all the same.

18 motivating proof repair

zip {T1} {T2} (l1 : list T1) (l2 : list T2) : list (T1 * T2) :=
list_rect (fun _ : list T1 => list T2 → list (T1 * T2))
(fun _ => nil)
(fun t1 tl1 (zip_tl1 : list T2 → list (T1 * T2)) l2 =>
list_rect (fun _ : list T2 => list (T1 * T2))
nil
(fun t2 tl2 (_ : list (T1 * T2)) =>
cons (t1, t2) (zip_tl1 tl2))

l2)
l1
l2.

Figure 8: The list zip function from Figure 2, translated to use elimi-
nators.

recursion with a syntactic guard condition,5 like the length function
from the Coq standard library (Figure 7, left). Both of these functions
behave the same way, but the function on the left is perhaps a bit
easier to understand from a traditional programming background:
the length of the empty list nil is 0, and the length of any other
list is the successor (S) of the result of recursively calling length on
everything but the first element of the list. Indeed, list_rect—like all
eliminators in Coq—is a constant that refers to a function itself defined
using pattern matching and recursion with a syntactic guard condition.
In fact, eliminators are equally expressive to pattern matching and
recursion with a syntactic guard [64, 34].6

For the sake of this thesis, however, I will assume primitive elimina-
tors: eliminators that are a part of the core syntax and theory itself,
rather than being defined by way of pattern matching and recursion.
Likewise, when I show Gallina code, from this point forward, I will
favor functions that apply eliminators rather than pattern matching,
like the length function from Figure 7 on the right.

To handle practical code that uses pattern matching and recursion, I
preprocess the code using a tool by Nate. This preprocessing tool trans-
forms functions that use simple pattern matching and recursion to
instead use Coq’s automatically generated eliminators (Section 4.5.1.3).
Figure 8, for example, shows the zip function after running the pre-
processing tool. In the rest of this thesis, I skip the step of running
this preprocessing tool in examples, though the corresponding code
invokes it explicitly.

5 Coq does not support arbitrary recursion. The syntactic guard on recursion forces
recursive functions in Coq to terminate. QED at Large explains ways to reason about
possibly nonterminating functions in spite of this.

6 What may be confusing, though, is that Coq’s automatically generated eliminators
are not as expressive Coq’s pattern matching and recursion, though it is possible to
manually define sufficiently expressive eliminators in Coq. This is an artifact of Coq’s
history.

2.1 proof development 19

intensionality Gallina is based on what is called an intensional
type theory: a type theory that distinguishes between equalities that
hold by reduction (definitional equality), and those that hold by proof
(propositional equality). That is, two terms t and t’ of type T are
definitionally equal if they reduce7 to the same normal form, and
propositionally equal if there is a proof that t = t’ using the inductive
equality type = at type T. Definitionally equal terms are necessarily
propositionally equal, but the converse is not in general true.

The inductive equality type also shows up inside of our proof
development—that is what the = sign in our theorem statement means.
The = type has exactly one constructor, eq_refl (reflexivity), which can
be applied to two terms exactly when those terms are definitionally
equal. Propositional equality is more general, though, because it
comes equipped with an eliminator eq_rect (or the reverse, eq_rect_r)
that encodes rewriting: if t = t’, and some motive P holds on t, then
the motive must also hold on t’. It is possible to use this eliminator
to prove equalities by sequences of rewrites, substituting equal terms
for one another until the goal holds by reflexivity.

back to our proof With that in mind, we can now look back
at the proof script and corresponding proof term in Figure 4. There
is a correspondence between the proof script and the proof term,
highlighted in the same color: The proof term is a function from the
context to a body that proves the goal type. Every call to induction
in the proof script shows up as an application of the list eliminator
list_rect, with the cases corresponding to the appropriate arguments
of the eliminator. The first call to auto compiles down to eq_refl,
the constructor for the inductive equality type. The second call to
auto compiles down to eq_sym, the proof of symmetry of equality in
the Coq standard library. Rewrites compile down to applications of
eq_rect_r, an eliminator over the inductive equality type.

Still, the proof terms can be difficult for a proof engineer to write
and understand. In Section 4.5, I will introduce a prototype decom-
piler by RanDair from proof terms back up to proof scripts. This
decompiler will make it possible for Pumpkin Patch to work over
highly structured Gallina terms, but produce Ltac proof scripts that
the proof engineer can use going forward.

2.1.2.2 Calculus of Inductive Constructions

The type theory that Gallina implements is CICω, or the Calculus
of Inductive Constructions. CICω is based on the Calculus of Con-

7 Reduction uses a sequence of predefined reduction rules, which are described by
various Greek letters. β-reduction, for example, has the standard meaning. δ-
reduction unfolds constants. Chapter 10 of Certified Programming with Dependent
Types [32] includes a nice summary of reduction and its relationship to definitional
equality.

20 motivating proof repair

〈i〉 ∈ N, 〈v〉 ∈ Vars, 〈s〉 ∈ { Prop, Set, Type〈i〉 }

〈t〉 ::= 〈v〉
| 〈s〉
| Π (〈v〉 : 〈t〉) . 〈t〉
| λ (〈v〉 : 〈t〉) . 〈t〉
| 〈t〉 〈t〉

Figure 9: Syntax for CoCω with (from top to bottom) variables, sorts,
function types, functions, and application.

〈t〉 ::= . . .
| Ind (〈v〉 : 〈t〉){〈t〉,. . . ,〈t〉}
| Constr (〈i〉, 〈t〉)
| Elim(〈t〉, 〈t〉){〈t〉,. . . ,〈t〉}

Figure 10: CICω is CoCω with inductive types, inductive constructors,
and primitive eliminators.

structions (CoC), a variant of the lambda calculus with two kinds of
universally quantified function types: polymorphism (types that de-
pend on types) and dependent types (types that depend on terms) [40].
CoC with an infinite universe hierarchy—basically a trick for logical
consistency—is called CoCω.8 The syntax for CoCω is in Figure 9.
Note that whereas in Gallina we represent universal quantification
over terms or types with ∀ , here we represent it with Π, as is standard.

CICω extends CoCω with inductive types [41]; the syntax for CICω

(building on syntax from an existing paper [153]) is in Figure 10, and
the typing rules are standard and omitted. As in Gallina, inductive
types are defined by their constructors and eliminators. Consider
the inductive type list of polymorphic lists that we saw in Figure 6

(fixing a type parameter T), this time in CICω:

Ind (list T : Type) {
list T1,
T → list T → list T2

}

where the nil constructor type is the zeroth constructor, and the cons
constructor type is the first constructor. Accordingly, the terms:

Constr (0, list T)1

and:

Constr (1, list T)2

refer to the constructors nil and cons, respectively.

8 The need for the infinite universe hierarchy is too distracting for me to explain in
detail here, but it is also not important for this thesis.

2.1 proof development 21

As in Gallina, inductive types like list come associated with elim-
inators. Unlike in Gallina, here we truly assume primitive elimina-
tors—that these eliminators do not reduce at all. Instead, we represent
them explicitly with the Elim construct. Thus, to eliminate over a list l
with motive P, we write:

Elim (l, P) {
f0

1,
f1

2

}

where functions:

f0 : P (Constr (0, list T))1

and:

f1 : Π (t : T) (l : list T) (IHl : P l) .
P ((Constr (1, list T)) t l)2

prove the base and inductive cases, respectively. When l, P, f0, and f1

are arbitrary, this statement has the same type as list_rect in Gallina.

conventions Throughout this thesis, I assume the existence of an
inductive propositional equality type = with constructor eq_refl and
eliminator eq_rect. I also assume an inductive type Σ for existential
or refinement types, with constructor ∃ and projections πl and πr.
For simplicity of presentation, when I write terms in CICω, I assume
variables are names, and that all names are fresh.

I often present differencing algorithms and transformations over
CICω relationally, using a set of judgments; to turn these relations into
algorithms, prioritize the rules by running the derivations in order,
falling back to the original term when no rules match. I use ~t and
{t1, . . . , tn} to denote lists of terms; the default derivation for a list of
terms is to run the derivation on each element of the list individually.

from cicω back to gallina Gallina implements CICω, but with
some important differences. Three differences are especially relevant:
The first is that Gallina lacks primitive eliminators, as I mentioned
earlier. The second is that Gallina has constants that define terms—
later on, this will help with building optimizations for proof repair
tools. The third is that variables in Gallina are de Bruijn indices rather
than names—the implementation handles this discrepancy.

Otherwise, a proof repair tool for Gallina can harness the power
of CICω. In particular, Π makes it possible to quantify over both
terms and types, so that we can state powerful theorems and prove
that they hold. Inductive types make it possible to write proofs by
induction. Both of these constructs mean that terms in Gallina are
extremely structured, and as we will soon see, that structure makes a
proof repair tool’s job much easier.

22 motivating proof repair

from gallina back to ltac This very same structure that helps
proof repair tools can be difficult for proof engineers to work with,
which is why proof engineers typically rely on Ltac tactics. Chapter 4

will introduce a prototype decompiler by RanDair from Gallina back
up to Ltac, so that proof repair tools can suggest tactics in the end.

Tactics more generally are a form of proof automation, or tools that
automatically search for proofs. This proof automation makes it much
simpler to develop proofs to begin with. But it turns out this proof
automation is a bit naive when it comes to maintaining proofs as
programs and specifications change over time. Proof repair is a new
form of proof automation for maintaining proofs: it uses the rich type
information carried by proof terms to automatically fix broken proofs
in response to change.

2.2 proof maintenance

What does it mean to maintain a verified system? Like all software
systems, verified systems evolve over time. The difference is that,
for verified systems, the proofs must evolve alongside the rest of the
system (Section 2.2.1). Proof engineers typically use development pro-
cesses to make proofs less likely to break in the face of these changes.
Still, even with good development processes, breaking changes hap-
pen all the time, even for experts (Section 2.2.2). All of this points to a
need for change-aware proof automation—that is, proof repair.

2.2.1 Breaking Changes

As verified systems evolve over time, both programs and specifica-
tions can change. Either of these changes can break existing proofs.

Consider the example from Section 2.1.1. We had two choices
for the specification of zip_preserves_length. We chose the weaker
specification on the top of Figure 3. This gave us some freedom in
how we implemented our zip function. At some point, however, we
may wish to change zip, and update our proof so that it still holds.
Alternatively, we may wish to port our development to use the stronger
specification on the bottom of Figure 3. We may even wish to use a
datatype more expressive than list, as I will show you in Chapter 4.
Any of these changes can break proofs in our proof development.

changing our program Since we chose the weaker specifica-
tion of zip_preserves_length, we are free to change how our zip func-
tion from Figure 2 behaves on edge cases, when the lengths of input
lists are not equal. Suppose we change our zip function to always
return nil in those cases, by just returning the old behavior when the
lengths are equal, and otherwise returning nil. To do this, we rename
our old zip function to be zip_same_length. We then define a new

2.2 proof maintenance 23

zip function that breaks into those two cases, calling zip_same_length
when the lengths are equal, and otherwise returning nil:

zip {T1} {T2} (l1 : list T1) (l2 : list T2) : list (T1 * T2) :=
sumbool_rect (fun _ => list (T1 * T2))
(fun (_ : length l1 = length l2) =>
zip_same_length l1 l2)

(fun (_ : length l1 = length l2) → False) =>
nil)

(eq_dec (length l1) (length l2)).

where sumbool_rect is an eliminator that lets us break into these two
cases, and eq_dec says that equality is decidable over natural numbers
(that is, any two numbers are either equal or not equal).

Our theorem zip_preserves_length still holds, but after changing
our program, the proof that it holds breaks. We can fix it by adding
the highlighted tactics:

Proof.
intros. unfold zip.
induction (eq_dec (length l1) (length l2)); try contradiction.
simpl. revert a. revert H. revert l2.
induction l1 as [|t1 tl1 IHtl1].
- auto.
- intros l2. induction l2 as [|t2 tl2 IHtl2].
+ intros H. auto.
+ intros H. simpl. rewrite IHtl1; auto.

Defined.

If we have many proofs about zip, they may break in similar ways,
and require similar patchwork. This can be painful!

changing our specification Suppose we instead wish to switch
to use the stronger specification on the bottom of Figure 3, and keep
our zip function the same. We can then update our proof accordingly,
but after changing this specification, other proofs may break. For
example, if we had proven a lemma for the cons case:

Lemma zip_preserves_length_cons {T1 : Type} {T2 : Type} :
∀ (l1 : list T1) (l2 : list T2) (t1 : T1) (t2 : T2),
length l1 = length l2 →
length (zip (cons t1 l1) (cons t2 l2)) = S (length l1).

that followed by zip_preserves_length:

Proof.
intros T1 T2 l1 l2 t1 t2 H.
simpl. f_equal.
rewrite zip_preserves_length; auto.

Defined.

then after the change, this proof would break.
We would have two choices to fix it:

1. leave our specification alone, and fix our proof, or

2. strengthen the specification of the broken proof.

24 motivating proof repair

In the first case, leaving our specification alone, we could write this
patched proof instead (with the difference highlighted):

Proof.
intros T1 T2 l1 l2 t1 t2 H.
simpl. f_equal.
rewrite ← min_id. rewrite H at 2.
apply zip_preserves_length; auto.

Defined.

The extra tactics correspond to an extra proof obligation: we must
now show that length l1 = min (length l1) (length l2). This holds
by the lemma min_id from the Coq standard library, combined with
the hypothesis that says that length l1= length l2.

Alternatively, in the second case, strengthening the specification:

Lemma zip_preserves_length_cons {T1 : Type} {T2 : Type} :
∀ (l1 : list T1) (l2 : list T2) (t1 : T1) (t2 : T2),
length (zip (cons t1 l1) (cons t2 l2)) =
S (min (length l1) (length l2)).

we could leave the proof alone:

Proof.
intros T1 T2 l1 l2 t1 t2.
simpl. f_equal.
apply zip_preserves_length; auto.

Defined.

But this could continue to break other downstream proofs that depend
on zip_preserves_length_cons, causing a cascading effect of change.
And this sort of cascading effect is precisely why the challenges of
change are exacerbated at scale, affecting even experts.

2.2.2 Even Experts are Human

Proof engineers often use development processes to work around some
of the challenges of change to begin with (Section 5.1.2). For example,
they might use information hiding techniques [168, 87] to abstract
away the details of zip or of zip_preserves_length, so that the burden
of change becomes just showing that the changed program or proof
still implements that abstraction. Similarly, they may build their own
custom tactics that hide the details of zip or zip_preserves_length
behind the automation itself, so that the burden of change becomes
just fixing the automation.

But even with good development processes, proof engineers change
programs and specifications all the time—and this does break proofs,
even for experts. Alex and I found evidence of this in our user study
of Coq proof engineers. For this user study, Alex and I built and
deployed a Coq plugin called REPLicaREPLicaREPLica (REPL Instrumentation for
Coq Analysis). REPLica listens to the Read Eval Print Loop (REPL)—
a simple loop that all user interaction with Coq passes through—to
collect data that the proof engineer sends to Coq during development.

2.2 proof maintenance 25

Figure 11: Patches to a lemma by an expert proof engineer, from the
REPLica user study.

We used REPLica to collect a month’s worth of granular data on the
proof developments of 8 intermediate to expert Coq proof engineers.
We visualized and analyzed this data to classify hundreds changes to
programs and specifications, and fixes to broken proofs. The resulting
data, analyses, and proof repair benchmarks are publicly available
with the proof engineers’ consent.9

We found that changes to programs and specifications were often
formulaic and repetitive. For example, Figure 11 shows an example
change by an expert proof engineer. In this change, the proof engineer
wrapped two arguments into a single application of Val in three dif-
ferent hypotheses of a lemma. This change did not occur in isolation:
the proof engineer patched 10 other definitions or lemmas in similarly,
wrapping arguments into an application of Val.

We also found that changes to programs and specifications did
break proofs, even for expert proof engineers. The proof engineers
most often (75% of the time) fixed broken proofs by stepping up above
those proofs in the UI and fixing something else, like a specification.
That is, development and maintenance were in reality tightly coupled.

But sometimes, proof engineers did not successfully fix proofs
broken by changes in programs and specifications. For example, for
the change in Figure 11, the expert proof engineer admitted or aborted
(that is, gave up on) the proofs of four of the five broken lemmas
after this change. In other words, right now, even experts sometimes
just give up in the face of change. This is empirical evidence of a
problem reported by proof engineers tasked with maintaining large
proof developments like CompCert or seL4 (Section 5.1.3).

9 http://github.com/uwplse/analytics-data

http://github.com/uwplse/analytics-data

26 motivating proof repair

The reason that experts still struggle with change is that design
principles all rely on proof engineers having the right foresight to
choose the right abstractions in the right places, and hide the right
information behind them. But proof engineers do not always have
perfect foresight. They may write proofs that depend on details like
the names of variables or the names of lemmas, much like our proofs
in Section 2.2.1. Or they may choose abstractions to hide information,
but those may not be the abstractions they still want after the change,
or they may hide the wrong information behind the abstractions.
Worse, breaking changes may happen outside of the proof engineers’
control, in libraries upon which their proof developments depend.

In other words, even experts are human. And with traditional
proof automation, the burden of change largely falls on those very
humans. This is because traditional proof automation considers only
the current state of programs, specifications, and proofs. It has no
way of representing changes in programs, specifications, and proofs
over time. So when traditional proof automation breaks in response
to change, it cannot help the proof engineer fix the broken proof. But
proof repair—smarter proof automation—can.

2.3 proof repair

Proof repair is a new form of proof automation that automatically
fixes broken proofs in response to change. Unlike traditional proof
automation, proof repair views programs, specifications, and proofs
as fluid entities. When a program or specification changes and this
breaks proofs, proof repair extracts information from those changes,
generalizes it, and applies it to fix proofs broken by the change.

The name of proof repair is inspired by program repair [114, 63],
or automatically fixing bugs in programs. But my proof repair tools
work differently from program repair tools, using a combination of
semantic differencing algorithms and proof term transformations
(Section 2.3.1). All of this happens over low-level proof terms in
Gallina—and this is the key to success (Section 2.3.2).

2.3.1 How Proof Repair Works

Recall my thesis:

Changes in programs, specifications, and proofs can carry
information that a tool can extract, generalize, and apply
to fix other proofs broken by the same change. A tool that
automates this can save work for proof engineers relative
to reference manual repairs in practical use cases.

My proof repair tools are the tools that automate this, using a combi-
nation of semantic differencing and proof term transformations. The

2.3 proof repair 27

differencing algorithms compare the old and new version of the pro-
gram, specification, or proof that has changed, and from that extract
the information carried by the change. The transformations then gen-
eralize that information and, in some cases, apply it to fix other proofs
broken by the same change. The details of all of this vary by the kind
of breaking change, as I will demonstrate in Chapters 3 and 4.

The way that this works is quite different from the way that program
repair tools typically work. A number of program repair tools work
by running tests or the programs themselves, and many use fitness
functions to identify candidate patches that are almost correct [114].
But there are not natural analogues of this in the world of proofs:
there are often no tests, it is not possible to just run the proof, and
there is not a natural fitness function that describes what it means for
a patch to a proof to be almost correct.

In addition, proof engineers write proofs in this high-level language
of tactics, Ltac. Each of these tactics is really a search procedure for a
proof term, so it is not straightforward to apply typical program repair
techniques to identify the next search procedure when a proof breaks.
Instead, proof repair tools can look down at the low-level language
of proof terms, Gallina. But this is difficult: the type theory CICω

beneath Gallina is so rich that Gallina itself is quite unforgiving. That
is, even very small changes can produce proof terms that no longer
type check. But—and this is the key to proof repair—the unforgiving
nature of Gallina actually turns out to be a good thing.

2.3.2 The Key to Proof Repair

The key to proof repair in this thesis is using the structure and infor-
mation carried by Gallina proof terms. In other words, differencing
operates over Gallina terms, and is guided by their semantics to narrow
down the search space—it is semantic differencing. The transforma-
tions use the result of differencing to transform some proof term to
a more general patch (in Chapter 3) or the patched proof itself (in
Chapter 4)—they are proof term transformations.

This approach circumvents two of the biggest challenges in program
repair: gathering enough information to efficiently search for a patch,
and knowing when that patch is actually correct (Section 5.2). Thanks
to the rich type theory beneath Gallina, changes in programs, specifi-
cations, and proofs carry so much information that my tools can use to
search for a patch, and proofs provide so much certainty that the patch
my tools find is correct in the end. This is why proof repair works.

But this approach presents its own challenges, like how to deal with
the unforgiving nature of proof terms, and how to produce friendly
proof scripts in the end. So Chapters 3 and 4 will show two tools that
instantiate this approach, and describe how these tools tackle these
challenges. Each chapter will introduce a tool that supports a different

28 motivating proof repair

class of changes. The first tool (Chapter 3) implements proof repair by
example, while the second tool (Chapter 4) implements proof repair
across equivalences. Chapters 3 and 4 will follow a parallel structure:

• Motivating Example (Sections 3.1 and 4.1): an example that
motivates the supported class of changes.

• Approach (Sections 3.2 and 4.2): a high-level description of how
the approach in Section 2.3.1 is instantiated.

• Differencing (Sections 3.3 and 4.3): detailed explanations of the
corresponding differencing algorithms.

• Transformations (Sections 3.4 and 4.4): detailed explanations of
the corresponding proof term transformations.

• Implementation (Sections 3.5 and 4.5): a description of the
implementation of the approach as a tool for Coq.

• Results (Sections 3.6 and 4.6): results from case studies and ex-
periments that show the tool can save work for proof engineers.

• Conclusion (Sections 3.7 and 4.7): a conclusion and reflection
on how the thesis is validated so far.

Enjoy.

historical note Chapter 3 draws on the 2018 work that intro-
duced the original proof repair vision, while Chapter 4 draws on
the more mature work that followed. This difference in maturity
permeates the results of each chapter:

• Design: Chapter 3 describes its algorithms at a high level, as ad
hoc heuristics that sometimes struggle with undecidability. It
defines judgments for these algorithms as interfaces, but does
not provide the derivations. Chapter 4 formalizes more elegant
algorithms, building on insights from Chapter 3, and cleanly
separating the decidable and undecidable parts.

• Implementation: Chapter 3 describes a prototype Coq plugin.
This prototype includes little automation for applying patches,
integrates poorly into proof engineering workflows, and does
not properly unfold constants (δ-reduce). Chapter 4 details
technologies that address these limitations, some of which can
be used with the Chapter 3 prototype if desired.

• Case studies: Chapter 3 shows only that a tool could have helped
proof engineers retroactively on a few repair scenarios over small
proofs of a fixed style. Chapter 4 shows that a tool can help and
in fact has helped proof engineers on a variety of real repair
scenarios, supporting larger proof developments (about 10000

LOC) in an order of seconds, regardless of proof style.

3
P R O O F R E PA I R B Y E X A M P L E

The first tool in the Pumpkin PatchPumpkin PatchPumpkin Patch proof repair plugin suite is the
namesake Pumpkin Patch prototype plugin. To prevent confusion,
when I refer to the Pumpkin Patch prototype and not to the tool suite
as a whole, I will abbreviate it as Pumpkin.

Pumpkin implements proof repair by example—so called because
of its resemblance to programming by example [71]. In this approach
to proof repair, the proof engineer provides an example of how to patch
a proof in response to a breaking change. A tool then generalizes the
example patched proof into a reusable patch that the proof engineer
can use to fix other proofs broken by that change. In this way, proof
repair by example is a new form of proof automation that accounts for
how breaking changes in programs and specifications are sometimes
reflected in the patches to the proofs they break.

In other words, in the frame of the thesis, proof repair by example
extracts information from changes in proofs, then generalizes it to
information corresponding to changes in the programs and specifi-
cations that broke those proofs to begin with (Section 3.2). This ex-
traction and generalization works at the level of proof terms, through
a combination of semantic differencing algorithms over proof terms
(Section 3.3) and semantics-aware proof term transformations (Sec-
tion 3.4). PumpkinPumpkinPumpkin automates this process (Section 3.5). Case studies
show retroactively that Pumpkin could have saved work for proof
engineers on major proof developments (Section 3.6).

3.1 motivating example

To motivate proof repair by example, consider a commit from the Coq
8.7 release [110]. This commit redefined injection from integers to
reals (Figure 12), or IZR. The change in IZR broke 18 proofs in the
standard library, plus many proofs in client proof developments. The
Coq standard library developer who committed the change fixed most
of the broken proofs, but failed to fix some of them—once again, an
expert giving up in the face of change.

The developer then made an additional 12 commits to address the
change in coq-contribs, a regression suite of projects that the Coq
standard library developers maintain as Coq versions change. Many

29

30 proof repair by example

IZR (z:Z) : R :=
match z with
| Z0 => 0
| Zpos n => INR (Pos.to_nat n)
| Zneg n => - INR (Pos.to_nat n)
end.

IZR (z:Z) : R :=
match z with
| Z0 => 0
| Zpos n => IPR n
| Zneg n => - IPR n
end.

Figure 12: Old (left) and new (right) definitions of IZR in Coq. The
old definition applies injection from naturals to reals and
conversion of positives to naturals; the new definition ap-
plies injection from positives to reals. In contrast with most
terms shown in this thesis, this term uses pattern matching
and recursion rather than primitive eliminators.

of these changes were simple. For example, the developer wrote a
lemma that describes the change:

Lemma INR_IPR : ∀p, INR (Pos.to_nat p) = IPR p.

The developer then used this lemma to fix broken proofs within the
standard library. For example, one proof broke on this line:

rewrite Pos2Nat.inj_sub by trivial.X

It succeeded with the lemma:

rewrite ← 3!INR_IPR, Pos2Nat.inj_sub by trivial.

These changes were outside-facing: proof engineers had to make
similar changes to their own proofs when they updated client proof
developments from Coq 8.6 to Coq 8.7. The Coq standard library
developer could have updated some tactics to account for this, but
it would have been impossible to account for every tactic that proof
engineers could have used.

Furthermore, while the library developer responsible for the changes
knew about the lemma INR_IPR describing the change, proof engineers
of client proof developments did not. Proof engineers had to determine
how the definition had changed themselves, and how to address the
change in their broken proofs—perhaps by reading documentation or
by talking to the Coq standard library developers.

This problem is what motivated the original vision for proof repair
by example. The idea was to build a tool that could determine how the
definition has changed for the proof engineer. It could then analyze
changes in the standard library and in coq-contribs that resulted from
the change in definition (in this case, rewriting by the lemma). It
could extract a reusable patch from those changes, which it could
automatically apply within broken user proofs. The proof engineer
would never have to consider how the definition had changed.

The Pumpkin prototype presented in this chapter took the first steps
toward realizing this vision.

3.2 approach 31

3.2 approach

Proof repair by example takes advantage of the fact that an example
patch to a broken proof can carry enough information (like the rewrite
by INR_IPR) to fix other proofs broken by the same change (like the
broken client proofs).

To repair proofs by example with Pumpkin (Section 3.2.1), the proof
engineer modifies a single proof script to provide an example patched
proof : an example of how to adapt a proof to a change. Pumpkin

extracts the information that example carries into a patch candidate: a
function that describes the change in the example patched proof, but
that is localized to the context of the example, and not yet enough
to fix other proofs broken by the change. Pumpkin then generalizes
that candidate into a reusable patch: a function that can be used to
fix other broken proofs broken by the same change, which Pumpkin

defines as a Gallina term.
The Pumpkin prototype focuses on finding reusable patches to

proofs in response to certain changes in the content of programs
and specifications (Section 3.2.2). It does this using a combination of
semantic differencing and proof term transformations: Differencing
(Section 3.2.3) looks at the difference between versions of the example
patched proof for this information, and finds the candidate. The proof
term transformations (Section 3.2.4) then modify that candidate to
produce the reusable proof patch. All of this happens over proof terms
in Gallina, since tactics may hide necessary information.

In other words, looking back to the thesis statement, the information
corresponding to changes in programs and specifications shows up
in the difference between versions of the example patched proof.
Pumpkin can extract and generalize that information.

3.2.1 Workflow: Repair by Example

The interface to Pumpkin is exposed to the proof engineer as a com-
mand. Commands in Coq are similar to tactics, except that they can
occur outside of the context of proofs, and they can define new terms.
Plugins like Pumpkin can extend Coq with new commands. In this
case, Pumpkin extends Coq with a new command called Patch Proof,
with the syntax:

Patch Proof old_proof new_proof as patch_name.

where old_proof and new_proof are the old and new versions of the
example patched proof, and patch_name is the desired name of the
reusable proof patch.1 This invokes the Pumpkin plugin, which
searches for a reusable proof patch and defines it as a new term if

1 Section 3.5 describes an alternative interface for Pumpkin with Git integration.

32 proof repair by example

find_patch(old_proof, new_proof) :=
diff types of old_proof and new_proof for goals
diff terms old_proof and new_proof for candidates
if there are candidates then

transform candidates
if there is a patch then return patch

return failure

Figure 13: Search procedure for a reusable proof patch in Pumpkin.

successful. All terms that Pumpkin defines are type checked in the
end, so Pumpkin does not extend the TCB.

When the proof engineer calls Patch Proof, this invokes the proof
patch search procedure in Figure 13. The search procedure starts by
differencing the types of old_proof and new_proof (that is, the theo-
rems they prove). The result that it finds is the goal type: the type
that the reusable proof patch should have. It then differences the
terms old_proof and new_proof directly to identify patch candidates,
which are themselves proof terms. Finally, it transforms those patch
candidates directly into a reusable patch. If it finds a reusable patch
with the goal type, it succeeds and defines it as a term.

To demonstrate this workflow, consider the change from the theorem
old to the slightly stronger theorem new in Figure 14. Changing old to
new can break proofs that used to successfully apply old:

apply old.

so that they fail after migrating to new:

apply new.X

When we call:

Patch Proof old new as patch.

Pumpkin invokes the search procedure, which differences old and new
to infer the goal type for the patch. Here, it infers the following goal:

∀ (n m p : nat),
n <= m →
m <= p →
n <= p →
n <= p + 1

which maps from the conclusion of new back to the conclusion of old
in a common context. It then differences the terms old and new to
identify candidate proof patches (Section 3.2.3), then transforms those
candidates to a reusable proof patch with that type (Section 3.2.4),
which it defines as a new term patch. This is something that we can
use to fix other proofs broken by this change, either by applying it
with traditional proof automation:

apply patch. apply new.

or by using the automation in Section 3.5.

3.2 approach 33

1 Theorem old:
2 ∀ (n m p : nat),
3 n <= m →
4 m <= p →
5 n <= p + 1.
6 Proof.
7 intros. induction H0.
8 - auto with arith.
9 - constructor. auto.
10 Qed.
11
12 old (n m p : nat)
13 (H : n <= m)
14 (H0 : m <= p)
15 :=
16 le_ind
17 m
18 (fun p0 => n <= p0 + 1)
19 (le_plus_trans n m 1 H)
20 (fun (m0 : nat) _
21 (IHle : n <= m0 + 1) =>
22 le_S n (m0 + 1) IHle)
23 p
24 H0.

1 Theorem new:
2 ∀ (n m p : nat),
3 n <= m →
4 m <= p →
5 n <= p.
6 Proof.
7 intros. induction H0.
8 - auto with arith.
9 - constructor. auto.
10 Qed.
11
12 new (n m p : nat)
13 (H : n <= m)
14 (H0 : m <= p)
15 :=
16 le_ind
17 m
18 (fun p0 => n <= p0)
19 H
20 (fun (m0 : nat) _
21 (IHle : n <= m0) =>
22 le_S n m0 IHle)
23 p
24 H0.

Figure 14: Two proofs with different conclusions (top) and the corre-
sponding proof terms (bottom). Highlighted lines corre-
spond to the change in theorem conclusion (top) and the
difference in terms that correspond to a patch (bottom).

34 proof repair by example

3.2.2 Scope: Changes in Content

The search procedure in Figure 13 searches for patches to proofs
broken by changes in the content of programs and specifications. For
example, Pumpkin can support the change in Figure 14, since some of
the content (the conclusion of the theorem) changes, but the structure
remains identical. In general, the Pumpkin prototype supports only
changes that do not add, remove, or rearrange any hypotheses.

The search procedure can be instantiated to different classes of
change in the content of programs and specifications. Thus, before
running the search procedure, Pumpkin infers an instance of the search
procedure from the example change.2 This instance customizes the
highlighted lines for an entire class of changes: it determines what to
diff on lines 1 and 2, and what transformations to run to achieve what
goal on line 4.

Figure 14 used the instance for a change in the conclusion of a
theorem. Given two such proofs of theorems:
∀ x, H x → P x
∀ x, H x → Q x

for any x, H, P, and Q, Pumpkin searches for a patch with goal type:
∀ x, H x → Q x → P x

In total, the Pumpkin prototype currently implements six instances
of the search procedure. Section 3.5.1.1 explains these instances, and
Section 3.6 demonstrates some of them on real proof developments.

3.2.3 Differencing: Candidates from Examples

Differencing operates over terms and types. Differencing tactics
would be insufficient, since tactics and hints may mask information
helpful to finding patches. For example, for the change in Figure 14,
the tactics in the proofs of old and new are identical, even though the
proof terms they compile down to are not. This is why differencing
looks at the change in terms to extract the patch candidates.

In the end, differencing identifies the semantic difference between
the old and new versions of the proof terms for the example patched
proof. At a high level, the semantic difference is the difference between
two terms that corresponds to the difference between their types
(see Section 3.3). The details of the semantic difference and where
differencing looks to find it vary by instance of the search procedure.

Consider a simplified version of the example in Figure 14, looking
only at the base case (line 19):
old_proof := le_plus_trans n m 1 H : n <= m + 1.
new_proof := H : n <= m.

2 In the original 2018 Pumpkin Patch paper, I called this a configuration. In this chapter,
I rename configuration to instance everywhere to avoid overloading this term, since
I unfortunately used this word again for something different later.

3.2 approach 35

For this change, Pumpkin uses the instance for changes in conclusions:

1: diff theorem conclusions of old_proof and new_proof for goals
2: diff function bodies of old_proof and new_proof for candidates
3: if there are candidates then
4: transform candidates

When this instance of the search procedure is invoked, semantic
differencing first identifies the difference in their types, here the re-
spective motives (line 18):
(fun p0 => n <= p0 + 1)
(fun p0 => n <= p0)

applied to m (line 17). This produces the candidate goal type:
n <= m → n <= m + 1

Differencing then diffs the terms for a function that has that type, here
(line 19):
fun (H : n <= m) => le_plus_trans n m 1 H

This is a patch candidate. This candidate is close, but it is not yet
a reusable patch. In particular, this candidate maps base case to
base case (it is applied to m); the patch should map conclusion to
conclusion (it should be applied to p). This is where the proof term
transformations will come in.

summary In summary, differencing has the following specification:

• Inputs: the example patched proof given by old_proof and
new_proof, a set of options corresponding to the instance of the
search procedure instance, and a final goal type goal, assuming:

– the change from old_proof to new_proof is in the class of
changes supported by instance.

• Outputs: a list of terms candidates of patch candidates, and a
candidate goal type candidate_goal, guaranteeing:

– each term in candidates has type candidate_goal.

Pumpkin infers the instance of the procedure and the candidate goal
type from the change in the example patched proof, so the proof
engineer does not have to provide this information. Pumpkin could
in theory infer the wrong instance or the wrong candidate goal type,
but this would not sacrifice soundness—it would mean only that the
patch procedure would either fail to produce a patch, or produce a
patch that is not useful. All terms that Pumpkin produces type check.

3.2.4 Transformations: Patches from Candidates

Differencing produces patch candidates that are localized to a par-
ticular context according to the inferred goal for that change, but do

36 proof repair by example

not yet generalize to other contexts. The transformations take each
candidate and try to modify it to produce a term that does generalize.
If they succeed, Pumpkin has found a reusable patch.

Consider once more the example in Figure 14. The candidate patch
that differencing found has this type:
candidate :=
fun (H : n <= m) => le_plus_trans n m 1 H

: n <= m →
n <= m + 1.

in an environment with fixed n and m. The reusable patch that Pumpkin

is looking for, however, should have this type:
∀ n m p,
n <= m →
m <= p →
n <= p →
n <= p + 1.

as this is the goal that Pumpkin inferred for this instance. The trans-
formations that Pumpkin runs will attempt to transform the candidate
into a patch with that type.

The details of which transformations to run vary by instance. There
are four transformations that turn candidates into reusable patches:

1. patch specialization to arguments,

2. patch generalization3 of arguments or functions,

3. patch inversion to reverse a patch, and

4. lemma factoring to break a term into parts.

Each instance chooses among these transformations strategically based
on the structure of the proof term.

For Figure 14, we can instantiate transform with two transformations:

1: diff conclusions of the theorems of old_proof and new_proof for goals
2: diff bodies of the proof terms for candidates
3: if there are candidates then
4: generalize and then specialize candidates

That is, first, Pumpkin generalizes the candidate by m (line 17), which
lifts it out of the base case:
fun n0 n m p H0 H1 =>
(fun (H : n <= n0) => le_plus_trans n n0 1 H)

: ∀ n0 n m p,
n <= m →
m <= p →
n <= n0 →
n <= n0 + 1.

3 In the original paper, I called this patch abstraction. But I later learned that generaliza-
tion has a technical meaning in the automated theorem proving world, and that the
technical meaning coincides beautifully with the technical meaning in the world of
proof assistants. So I renamed it for this thesis.

3.3 differencing 37

Pumpkin then specializes this generalized candidate to p (line 23), the
argument to the conclusion of le_ind. This produces a patch:
patch n m p H0 H1 :=
(fun (H : n <= p) => le_plus_trans n p 1 H)

: ∀ n m p,
n <= m →
m <= p →
n <= p →
n <= p + 1.

which has the goal type, so Pumpkin is done.
This simple example uses only two transformations. The other

transformations help turn candidates into patches in similar ways,
all guided by the structure of the proof term. I will describe these
transformations more in Section 3.4.

summary In summary, the transformations together have the fol-
lowing specification:

• Inputs: the inputs and outputs of differencing, assuming:

– the assumptions and guarantees from differencing hold.

• Outputs: a term patch that is the reusable proof patch, guaran-
teeing:

– patch has the inferred final goal type goal for the change.

When these transformations fail, or when the list of candidates that
differencing returns is empty, Pumpkin simply fails to return a patch.
As with differencing, it is possible that a mistake in the implementation
leads to a final goal type is not useful to the proof engineer, but
this cannot sacrifice soundness: every patch Pumpkin produces type
checks with the goal type in the end.

3.3 differencing

Differencing is aware of and guided by the semantics of Coq’s rich
proof term language Gallina—that is what makes it a semantic dif-
ferencing algorithm. This means that differencing can take advantage
of the structure and information carried in every proof term, thanks
to Gallina’s rich type theory CICω. The rich structure of terms helps
guide differencing for each instance of the search procedure, while
the rich information in their types helps ensure correctness in the end.

Consider once again the example from Figure 14, but this time not
just the base case. Both versions of the proof are inductive proofs us-
ing the same eliminator, with slightly different motives. Accordingly,
differencing knows that there are two places to look for candidates,
namely the base case (line 19) and the inductive case (lines 20-22).
Differencing breaks each inductive proof into these cases, then recur-
sively calls itself for each case. In the base case, it finds the candidate

38 proof repair by example

from Section 3.2.3. Since this candidate has the candidate goal type
(here, the goal type specialized to the base case), differencing knows it
has successfully found a candidate.

The rich type information proof terms carry helps prevent explo-
ration of syntactic differences that are not meaningful. For example,
in the inductive case of the proof term from Figure 14, the inductive
hypothesis IHle (line 21) changes:

. . . (IHle : n <= m0 + 1) . . .

. . . (IHle : n <= m0) . . .

Notably, though, the type of IHle changes for any two inductive proofs
over le with different conclusions. A syntactic differencing component
may identify this change as a candidate. My semantic differencing
algorithms know that they can ignore this change. This section de-
scribes the design of these algorithms. Section 3.5.1.2 describes the
implementation in Pumpkin.

Differencing recurses over the structure of two terms ta and tb in a
common environment Γ. When it recurses, it extends Γ with common
assumptions, then differences subterms. In each case, it carries a goal
type G, and returns a list of patch candidates ~t that each have that
goal type. That is, we can view it as a judgment Γ ` (ta, tb, G) ⇓d~t,
where in the end, for every t in~t, Γ ` t : G. The details of this vary by
subterm-instance combination.

identity The simplest patch is the identity patch. When two terms
are definitionally equal, differencing infers that the goal is identity,
and returns a singleton list containing only the identity function
instantiated to the appropriate type.

application When one proof term is a function application, for
example:

Γ ` (f ta, tb, G) ⇓d~t

differencing checks to see if tb is in f ta. That is, it searches for a sub-
term of f ta that is definitionally equal to tb. This is how differencing
can identify the candidate for the base case of Figure 14 (line 19). It is
also a core building block that other differencing heuristics rely on.

When both proof terms are function applications:

Γ ` (fa ta, fb tb, G) ⇓d~t

and the previous heuristic fails, differencing may recurse into both the
functions and the arguments, search for patches, and then compose
the results. How to compose those results varies by instance of the
search procedure.

functions The treatment of functions depends on whether a hy-
pothesis or a conclusion has changed. When recursing into the body
of two functions, each with a hypothesis of the same type:

3.3 differencing 39

Γ

Γ, _ : P 0 Γ, n : nat

Γ, n : nat, IH : P n

Γ, n : nat, IH : P n, _ : P (S n)

n

IH
∀ P,
 P 0 ->
 (∀ n, P n -> P (S n)) ->
 ∀ n, P n

Figure 15: The type of (left) and tree for (right) the eliminator of nat.
The solid edges represent hypotheses, and the dotted edges
represent the proof obligations for each case in an inductive
proof.

Γ ` (λ(ta : T).ba, λ(tb : T).bb, G) ⇓d~t

differencing assumes that the conclusion has changed. That is, it
assumes that ta and tb are the same, adds one of them to a common
environment, and differences the body:

Γ, ta : T ` (ba, bb[ta/tb]) ⇓d ~b

It then filters those candidates~b to only those with an adjusted goal
type G ta, then wraps each candidate b in~b in a function in the end:

λ(ta : T).b

with type G.
When a hypothesis type has changed:

Γ ` (λ(ta : Ta).ba, λ(tb : Tb).bb, G) ⇓d~t

differencing acts similarly, but it substitutes the changed hypothesis
type in the body in order to recurse into a well-typed environment.
It also has some additional logic to remove hypotheses that need not
show up in the goal type.

eliminators Recall that inductive types in CICω come equipped
with primitive eliminators. The semantic differencing algorithms
views inductive types as trees that represent these eliminators. In these
trees, every node is a type context, and every edge is an extension to
that type context with a new term. Correspondingly, type differencing
(to identify goal types) compares nodes, and term differencing (to find
candidates) compares edges.

The key benefit to this model is that it provides a natural way to
express inductive proofs, so that differencing can efficiently identify
candidates. Consider, for example, searching for a patch between
conclusions of two inductive proofs of theorems about the natural
numbers:

Elim(nat, P) { f0, fS}
Elim(nat, Q) {g0, gS}

40 proof repair by example

with goal type:

Q→ P

Differencing looks in both the base case and in the inductive case
for candidates. In each case, differencing diffs the terms in the dotted
edges of the tree for the eliminator of nat (Figure 15) to try to find a
term that maps between conclusions of that case:

Γ ` (f0, g0, Q 0→ P 0) ⇓d ~t0

Γ ` (fS, gS, Π(n : nat).Q (S n)→ P (S n)) ⇓d ~tS

where O is shorthand for Constr (0, nat), and S is shorthand for
Constr (1, nat). In the inductive case, differencing also knows that
the change in the type of the inductive hypothesis is not semantically
relevant (it occurs for any change in the inductive motive). Further-
more, it knows that the inductive hypothesis cannot show up in the
patch itself, since the goal type does not reference the inductive hy-
pothesis, so it attempts to remove any occurrences of the inductive
hypothesis in any candidate.

When differencing finds a candidate, it knows Q and P as well as
the arguments 0 or S n. This makes it simple for Pumpkin to later
query the transformations for the final patch, with type Q→ P.

3.4 transformation

The proof term transformations together transform a patch candidate
into a reusable proof patch. At a high level, these transformations
adapt the candidate to the context of the goal type that Pumpkin

infers. As with differencing, the transformations are aware of and
guided by the semantics of Gallina’s type theory CICω. This section
describes the design of these transformations. Section 3.5.1.3 describes
the implementation.

The transformations together recurse over the structure of each
term in the list of candidates~t in an environment Γ, and adapt that
candidate to some new context in a goal-directed manner. In the
end, if successful, they produce a reusable proof patch p with type G,
where G is the inferred goal type. That is, we can view the high-level
composition of transformations as a single judgment Γ ` (~t, G) ⇓t p,
where in the end, Γ ` p : G. The details vary by transformation, and
the details of which transformations run at all and in what order to
reach the goal vary by the instance of the search procedure.

specialization Sometimes, candidates are too general. Special-
ization takes a candidate that is too general, and specializes it to
arguments as determined by the difference in terms. To find a patch
for Figure 14, for example, Pumpkin specialized the candidate to p.

Specialization takes a single patch candidate, some arguments, and
a reduction strategy, and returns a new candidate. It first applies the

3.4 transformation 41

function to the argument, then applies the reduction strategy on the
result. The default reducer, for example, uses βι-reduction in Coq—
two of the definitional equality reductions.4 Section 3.5.1.3 describes
other reducers. The only requirement for a reducer is that the end
result should be definitionally equal to the original.

Depending on the procedure instance and the step in the process,
the transformed candidate may be the reusable patch, or it may just be
an intermediate candidate. It is the job of the patch finding procedure
to provide both the candidate and the arguments, and to determine
which transformation to run next, if applicable.

generalization In other cases, a patch candidate is too specific.
Generalization takes a candidate that is too specific and generalizes
it. We saw this for the example in Figure 14 as well: to go from
the candidate that Pumpkin found in the base case to the eventual
reusable patch, Pumpkin generalized the candidate by m (before ap-
plying specialization).

There are two kinds of generalization. The first generalizes candi-
dates that map between types that share a common argument, like:

Q t → P t

by the common argument:

Π(t′ : T), Q t′ → P t′

where T is the type of t. The second generalizes candidates that map
between types that share a common function, like:

P t′ → P t

by the common function:

Π (Q : T), Q t′ → Q t

where T is the type of Q.
Generalization takes a patch candidate, the goal type, and the

function arguments or function by which to generalize. It first wraps
the candidate inside of a lambda from the type of the term by which
to generalize. Then, it substitutes terms inside the body with the
generalized term. It continues to do this until there is nothing left to
generalize, then filters results by the goal type.

Consider, for example, generalizing the candidate from Figure 14

by m (represented in CICω syntax this time, but using shorthand for
Gallina constants that were defined in the example):

λ (H : le n m) . le_plus_trans n m (S O) H
: le n m →
le n (plus m (S O)).

where le is an inductive type, and le_plus_trans and plus are both
functions in the current context. The first step wraps this in a lambda
from some nat, the type of m:

4 ι-reduction is basically β-reduction for inductive types.

42 proof repair by example

λ (n0 : nat) (H : le n m) . le_plus_trans n m (S O) H
: Π (n0 : nat),

le n m →
le n (plus m (S O)).

The second step substitutes n0 for m:

λ (n0 : nat) (H : le n n0) . le_plus_trans n n0 (S O) H
: Π (n0 : nat),

le n n0 →
le n (plus n0 (S O)).

In general, generalization is undecidable, as the terms and types
may be reduced, so that the common function or argument does not
appear explicitly. That is, generalization fundamentally relies on a
kind of unification. This poses a challenge for generalization in the
second step—substitution.

To handle this challenge, generalization uses a list of substitution
strategies5 to determine what subterms to substitute. In this case, the
simplest strategy works: the tool replaces all terms that are convertible
to the concrete argument m with the generalized argument n0, which
produces a single candidate. Type checking this candidate confirms
that it is a patch. In some cases, the simplest strategy is not sufficient,
even when it is possible to generalize the term. Section 3.5.1.3 describes
a sample of other strategies.

It is the job of the patch finding procedure to provide the candidate
and the terms by which to generalize. In addition, the implementation
of each search procedure instance includes a list of strategies. The
instance for changes in conclusions, for example, starts with the sim-
plest strategy, and moves on to more complex strategies only if that
strategy fails. This design makes generalization simple to extend with
new strategies and simple to call with different strategies for different
instances, or even as an optimization for the proof engineer.

inversion Sometimes, when two types are propositionally equal,
candidate patches may appear in the wrong direction. For example,
consider two list lemmas:6

old : ∀ {T} l’ l, length (l’ ++ l) = length l’ + length l.
new : ∀

{T} l’ l, length (l’ ++ l) = length l’ + length (rev l).

If Pumpkin searches the difference in proofs of these lemmas for a
patch from the conclusion of new to the conclusion of old, it may find
a candidate backwards:

candidate {T} l’ l (H : old l’ l) :=
eq_rect_r . . . (rev_length l)

: ∀ {T : Type} (l’ l : list T),
old l’ l → new l’ l.

5 I originally called these abstraction strategies, but this is more accurate.
6 It is too difficult to port this entire example, including the proof, to CICω for demon-

stration. So I leave it in Gallina and Ltac, but still use it to give intuition for inversion.

3.4 transformation 43

The transformation can invert this to get the patch:
patch {T} l’ l (H : new l’ l) :=
eq_rect_r . . . (eq_sym (rev_length l))

: ∀ {T : Type} (l’ l : list T),
new l’ l → old l’ l.

We can then use this patch to port proofs. For example, if we add this
patch to a hint database [1], we can port this proof:
Theorem app_rev_len {T : Type} : ∀ (l l’ : list T),
length (rev (l’ ++ l)) = length (rev l) + length (rev l’).

Proof.
intros. rewrite rev_app_distr. apply old.

Defined.

to this proof:
Theorem app_rev_len {T : Type} : ∀ (l l’ : list T),
length (rev (l’ ++ l)) = length (rev l) + length (rev l’).

Proof.
intros. rewrite rev_app_distr. apply new.

Defined.

Rewrites like candidate are invertible: we can invert any rewrite in
one direction by rewriting in the opposite direction. In contrast, it is
not possible to invert the patch Pumpkin found for Figure 14.

When a candidate is invertible, patch inversion exploits symmetry
to try to reverse the conclusions of a candidate patch. It first factors the
candidate using the factoring transformation, then calls the primitive
inversion function on each factor, then finally folds the resulting list
in reverse. The primitive inversion function exploits symmetry. For
example, propositional equality is symmetric, so the transformation
can invert any application of the equality eliminators. I will explain
this more in Section 3.5.1.3.

factoring The other transformations sometimes need help break-
ing a large function into smaller subterms. This can break other
problems, like generalization, into smaller subproblems. It is also
necessary to invert certain terms, since the inverse of:

g ◦ f : X → Z

where:
g : Y → Z
f : X → Y

for arbitrary non-dependent types X, Y, and Z, is of course:

f −1 ◦ g−1 : Z → X

This shows up often for inverting sequences of rewrites, as I will show
in Section 3.5.1.3. To invert a term like this, Pumpkin identifies the
factors [f; g], inverts each factor to [f−1; g−1], then folds and applies
the inverse factors in the opposite direction.

The factoring transformation looks within a term for its factors. For
the term above, it returns both factors: f and g. In this case, factoring

44 proof repair by example

takes the composite term and X as arguments. It first searches as deep
as possible for a term of type X→ Y for some Y. If it finds such a term,
then it recursively searches for a term with type Y→ Z. It maintains
all possible paths of factors along the way, discarding any paths that
cannot reach Z. It does not yet support paths where Y depends on X.

Factoring will necessarily sometimes fail, as the general problem
of finding all possible nontrivial factors of a function is undecidable:
there are always infinitely many factors if factors can compose to
identity. Determining all possible nontrivial factors—those that contain
no subsets of factors that compose to identity—reduces to detecting
whether an arbitrary function is extensionally equal to the identity
function at a fixed but arbitrary type, which is itself undecidable.7

Factoring, like generalization, relies on a kind of unification to attempt
this problem in spite of undecidability.

3.5 implementation

The source code of the Pumpkin PatchPumpkin PatchPumpkin Patch proof repair plugin suite is on
Github.8 It includes the source code of the PumpkinPumpkinPumpkin prototype plugin,
extended with a number of new features. The thesis release supports
Coq 8.8, with Coq 8.9.1 support in a branch.

This section describes the implementation of the Pumpkin prototype
(Section 3.5.1), along with some new features that go beyond the
original prototype and help with workflow integration (Section 3.5.2),
plus an evaluation of the boundaries of the Pumpkin prototype that
still stand (Section 3.5.3). The interested reader can follow along in
the repository.

3.5.1 Tool Details

The implementation (Section 3.5.1.1) of the procedure from Figure 13

in Section 3.2.1 starts with a preprocessing step which compiles the
proof terms to trees (like the tree in Figure 15).9 The implementation
always maintains pointers to easily switch between the tree and AST

7 Edward Z. Yang wrote a cute proof of this on Twitter: Let the function be an arbitrary
Turing complete program parameterized by fuel, returning the number of steps taken
when it does not terminate within that number of steps, or otherwise returning zero
when it does terminate. Then determining whether or not the function is extensionally
equal to identity reduces to determining whether or not the program terminates.

8 Latest version: http://github.com/uwplse/PUMPKIN-PATCH.
Stable thesis release: https://github.com/uwplse/PUMPKIN-PATCH/tree/v1.0.
Coq 8.9.1 branch: https://github.com/uwplse/PUMPKIN-PATCH/tree/8.9.1.
2018 release: https://github.com/uwplse/PUMPKIN-PATCH/releases/tag/cpp18.

9 Representing proof terms directly as trees in the implementation rather than just in
the theory is one of my biggest regrets three years later. This representation is useful
for understanding how differencing works over inductive types, but implementing
it adds clutter that makes Pumpkin difficult to maintain. My later work represents
proof terms as terms, and avoids this representation.

https://twitter.com/ezyang/status/1391546552989241346
http://github.com/uwplse/PUMPKIN-PATCH
https://github.com/uwplse/PUMPKIN-PATCH/tree/v1.0
https://github.com/uwplse/PUMPKIN-PATCH/tree/8.9.1
https://github.com/uwplse/PUMPKIN-PATCH/releases/tag/cpp18

3.5 implementation 45

representations of the terms. Differencing (Section 3.5.1.2) operates
over trees, while the transformations (Section 3.5.1.3) operate directly
over the terms those trees represent. Pumpkin has no impact on the
TCB (Section 3.5.1.4).

3.5.1.1 The Procedure

The Pumpkin prototype exposes the patch finding procedure (patcher.
ml4) to users through the Coq command Patch Proof. After compiling
to trees (evaluation.ml), Pumpkin automatically infers which instance
of the search procedure to use from the example change.

Internally, Pumpkin represents search procedure instances as sets of
options, which it passes to the procedure. The procedure uses these op-
tions to determine how to compose components (for example, whether
to generalize candidates) and how to customize components (for ex-
ample, whether semantic differencing should look for an intermediate
lemma). In total, the Pumpkin prototype currently implements six
instances. The first five correspond to changes in:

1. conclusions of theorems,

2. hypotheses of theorems,

3. dependent arguments to constructors of inductive types,

4. conclusions of constructors of inductive types, and

5. cases of fixpoints.

The final instance is useful for proof optimization (Section 3.5.2). The
support for these changes is limited in expressiveness and power; more
information on limitations in scope can be found in the repository.
Extending Pumpkin with a new instance of the search procedure
amounts to extending key functions in the implementation with a case
corresponding to the new instance.

3.5.1.2 Differencing

As noted in Section 3.3, differencing (differencing.ml) operates over
trees. Differencing uses the structure of these trees to prioritize se-
mantically relevant differences. At the lowest level, it calls a primitive
differencing function which checks if it can substitute one term within
another term to find a function between their types.

The differencing component is lazy: it compiles terms into trees one
step at a time. It then expands each tree as needed to find candidates
(expansion.ml). For example, differencing two functions for a patch
between conclusions:

fun (t : T) => b
fun (t’ : T) => b’

46 proof repair by example

Differencing introduces a single term of type T to a common environ-
ment, then expands and recursively diffs the bodies b and b’ in that
environment.

3.5.1.3 Transformation

Pumpkin implements the four transformations from Section 3.4: spe-
cialization, generalization, inversion, and factoring. These transfor-
mations operate directly over terms in Gallina. The Pumpkin proce-
dure chooses among them by search procedure instance, and in the
end checks the type of the patch to ensure that is has the goal type.
Pumpkin also determines what arguments to pass to each transforma-
tion based on the instance. As a bonus, Pumpkin exposes commands
that correspond to each of these transformations (patcher.ml4), so that
proof engineers can call them outside of the proof patching procedure.

specialization Specialization (specialize.ml) takes a patch can-
didate and some arguments, all of which are Gallina terms. It also
takes a custom reducer (reducers.ml) as a higher-order function that
reduces a Coq term. It applies the candidate function to the arguments,
then reduces the result using the supplied reducer.

The default specializer reduces the result using Coq’s Reduction.
nf_betaiotazeta function. Other reducers include one that does not
reduce at all, one that removes unnecessary applications of the identity
function, one that does weak head reduction, one that completely nor-
malizes terms, and one that δ-reduces to unwrap constants. There are
also higher-order combinators for reducers, including chain reduction
with errors, chain reduction without errors, and reduction over the
types of supplied terms. This makes it possible for search procedure
instances to highly customize specialization. I expose these reducers
and combinators in the Coq plugin library.

generalization Generalization (abstraction.ml) takes a patch
candidate, the goal type, and the arguments or function by which
to generalize, all as Gallina terms. It also takes a list of substitution
strategies to determine what subterms to substitute, and how. After
generalizing the candidate to a lambda term, it substitutes subterms
inside of the body with the generalized argument using the supplied
list of substitution strategies, in order.

The simplest strategy replaces all terms convertible to a particular
concrete argument with the supplied generalized argument. In some
cases, this strategy is not sufficient. It may be possible to produce a
patch only by generalizing some of the subterms convertible to the
argument or function (see Section 3.5.3.2), or the term may not contain
any subterms convertible to the argument or function at all.

I implement several strategies to account for this. The combina-
tions strategy, for example, tries all combinations of substituting only

3.5 implementation 47

some of the convertible subterms with the generalized argument. The
pattern-based strategy substitutes subterms that match a certain pat-
tern with a term that corresponds to that pattern. Some strategies
reduce before generalizing, and some do not. I expose these strategies
in the Pumpkin OCaml API (abstracters.mli).

inversion Inversion (inverting.ml) takes as input a patch candi-
date as a Gallina proof term, and tries to reverse the conclusion of
its type. It works by first factoring the candidate, then exploiting
symmetry properties to invert those factors, then finally composing
the inverted factors in the opposite order.

For example, recall that the equality eliminator in Gallina is eq_rect.
The rewrite tactic in Ltac often compiles down to an application of
eq_rect. Since equality is symmetric, the Coq standard library also
comes equipped with an inverse function eq_rect_r, related to eq_rect
by symmetry of equality:

eq_rect_r A x P (H : P x) y (H0 : y = x) :=
eq_rect x (fun y0 : A => P y0) H y (eq_sym H0)

When inversion encounters an eq_rect in one of its factors, it reverses it
by applying symmetry of equality, effectively producing an application
of eq_rect_r. The opposite direction works similarly.

If inversion does not recognize any type symmetry properties it
can exploit in a factor, it strategically swaps subterms in the factor
and type checks the result to see if it is an inverse. This essentially
amounts to an ad hoc attempt to discover symmetry properties.

factoring Factoring (factoring.ml) takes as input a Gallina term,
and attempts to break it into factors. When it succeeds, it returns the
factors as a list of terms; otherwise, it returns the empty list.

Factoring works by searching with a term for factors. Consider
factoring a sequence of rewrites:

t (a b c d: nat) (H: a = b) (H0: b = c) (H1: c = d) : a = d :=
eq_rect_r
(fun (a0 : nat) => a0 = d)
(eq_rect_r (fun (b0 : nat) => b0 = d) H1 H0)
H.

into two independent rewrites:

f (a b c d: nat) (H: a = b) (H0: b = c) (H1: c = d) : b = d :=
eq_rect_r (fun (b0 : nat) => b0 = d) H1 H0.

g (a b c d: nat) (H: a = b) (H0: b = c) (H1: b = d) : a = d :=
eq_rect_r (fun (a0 : nat) => a0 = d) H1 H.

t (a b c d: nat) (H: a = b) (H0: b = c) (H1: c = d) : a = d :=
g a b c d H H0 (f a b c d H H0 H1).

To discover f and g, factoring starts by assuming all of the hypotheses
of t, then searching as deep as possible within the conclusion of t

48 proof repair by example

for a term of type Y for some Y (here, the conclusion of f, with type
b = d). It then assumes Y, and recursively factors the term it gets
from substituting in that hypothesis for f (here, it assumes b = d, and
substitutes to derive the term g). It repeats this until it is able to reach
the conclusion type (here a = d, the type of the conclusion of g), at
which point it has found the only possible path of factors, and it is
done. It returns these factors as Gallina terms.

3.5.1.4 Trusted Computing Base

A common concern for proof developments is an increase in the TCB.
Pumpkin takes this into consideration. In particular, Pumpkin is
implemented as a Coq plugin, and Coq type checks all terms that
plugins produce. Since Pumpkin does not modify the type checker,
it cannot produce an ill typed term. Pumpkin also does not add any
axioms, and so does not increase the TCB.

3.5.2 Extensions

Since releasing the Pumpkin prototype, I have extended it with many
features for better integration into proof engineering workflows. This
section summarizes three early extensions: Git integration, preliminary
support for applying patches, and proof optimization.

git integration Pumpkin Patch exposes a Git interface to Pump-
kin called Pumpkin-git [139]. Pumpkin-git makes it possible to call
Pumpkin’s Patch Proof command by command line over Git commits.
To call Pumpkin-git, the proof engineer simply runs the (command
line) command:
pumpkin-git example_proof file.v -rev rev

This searches for a patch corresponding to the change in example_proof
in file.v compared to the revision rev of the local repository. It will
then prompt the proof engineer with the patch it finds, and either
overwrite the file (with consent) or otherwise save the results to a
temporary file. There are many options to control the behavior of
Pumpkin-git, all of which can be found in the repository.

patch application For the Pumpkin prototype, the differencing
algorithm and proof term transformations extract and generalize in-
formation from example patched proofs in the form of reusable patch,
but do not yet help apply those patches automatically. Since imple-
menting the prototype, I have extended Pumpkin-git with preliminary
support for patch application via hint generation. The interface is:
pumpkin-git example_proof_id file.v -rev rev -hint

This places the generated patch in a hint database in Coq. Coq applies
hints in its hint databases automatically, in some cases taking care of

3.5 implementation 49

the changes at the proof script level that the proof engineer would
have to make to use these patches.

proof optimization Five of the implemented search procedure
instances correspond to changes, but the sixth is special: it corresponds
to the absence of change. This makes it possible to reuse the Pumpkin

infrastructure to optimize proofs to automatically remove extra calls
to induction. See Optimization.v for more information.

3.5.3 Testing Boundaries

In this section, I explore the boundary between what the semantic
differencing and transformation implementations in the Pumpkin

prototype can and cannot handle. It is precisely this boundary that
informs how to improve the implementations.

To evaluate this boundary, I tested the Pumpkin prototype on a
suite of 50 pairs of proofs (Section 3.5.3.1). I designed 11 of these pairs
to succeed, then modified their proofs to produce the remaining 39

pairs that try to stress the core functionality of the tool. I learned the
following from the pairs that tested Pumpkin’s limitations:

1. The failed pairs drive improvements.
Pumpkin failed on 17 of 50 pairs. These pairs inform how to
improve differencing and transformations in the future. (Sec-
tion 3.5.3.2)

2. The pairs reveal potential substitution strategies.
Pumpkin produced an exponential number of candidates in 5 of
50 pairs. New substitution strategies would dramatically reduce
the number of candidates. (Section 3.5.3.2)

3. PumpkinPumpkinPumpkin was fast, but it could be even faster.
The slowest successful patch took 48 ms. The slowest failure
took 7 ms. Simple changes could make Pumpkin more efficient.
(Section 3.5.3.3)

3.5.3.1 Patch Generation Suite

I wrote a suite10 of 50 pairs of proofs, proving a total of 11 pairs of
theorems. I wrote these proofs myself since there was no existing
benchmark suite to work with. I used the following methodology:

1. Choose theorems old and new.

2. Write similar inductive proofs of old and new.

3. Modify the proof of old to produce more pairs.

10 http://github.com/uwplse/PUMPKIN-PATCH/blob/cpp18/plugin/coq/Variants.v

http://github.com/uwplse/PUMPKIN-PATCH/blob/cpp18/plugin/coq/Variants.v

50 proof repair by example

fun n m p (H : n <= m) (H0 : m <= p) =>
le_S n p . . . (* proof of stronger lemma *)

: ∀ n m p,
n <= m →
m <= p →
n <= S p.

fun n m p (H : n <= m) (H0 : m <= p) =>
le_plus_trans n p 1 . . . (* proof of stronger lemma *)

: ∀ n m p,
n <= m →
m <= p →
n <= p + 1.

Figure 16: Two proof terms old (top) and new (bottom) that contain the
same proof of a stronger lemma.

4. Search for patches from new to old.

5. If possible, search for patches from old to new.

My goal was to determine what changes to proofs stress the com-
ponents and how to use that information to drive improvements. I
focused on differences in conclusions, the most supported instance
of the search procedure at the time. Since Pumpkin operates over
terms, I removed redundant proof terms, even if they were produced
by different tactics. I controlled the first pair of proofs of each pair
of theorems for features I had not yet implemented at the time, like
nested induction, changes in hypotheses, and generalizing omega terms.
These features sometimes showed up in later proofs (for example, af-
ter moving a rewrite); I kept these proofs in the suite, since isolated
changes to supported proofs that introduce unsupported features can
inform future improvements.

3.5.3.2 Three Challenges

Pumpkin found patches for 33 of the 50 pairs. 28 of the 33 successes
did not stress Pumpkin at all: Pumpkin found the correct candidate
immediately and was able to generalize it in one try. The pairs that
Pumpkin failed to patch and the successful pairs that stressed general-
ization reveal key information about how to improve differencing and
the transformations. I walk through three examples below.

a challenge for differencing For one pair of proofs of theo-
rems with propositionally equal conclusions (Figure 16), differencing
failed to find candidates in either direction. These proofs both contain
the same proof of a stronger lemma; Pumpkin found patches from this
lemma to both old and new, but it was unable to find a patch between
old and new. A patch may show up deep in the difference between

3.5 implementation 51

le_plus_trans and le_S, but even if we δ-reduce (unfold the definition
of) le_plus_trans, this is not obvious:

le_plus_trans n m p (H : n <= m) :=
(fun lemma : m <= m + p =>
trans_contra_inv_impl_morphism
PreOrder_Transitive
(m + p)
m
lemma)

(le_add_r m p)
H.

This points to two difficulties in finding patches: Knowing when to
δ-reduce terms is difficult; exploring the appropriate time for reduc-
tion may produce patches for pairs that Pumpkin currently cannot
patch. Furthermore, finding patches is more challenging when neither
theorem has a conclusion that is as strong as possible.

a challenge for inversion For one pair of proofs with propo-
sitionally equal conclusions, Pumpkin found a patch in one direction,
but failed to invert it:

fun n m p (_ : n <= m) (_ : m <= p) (H1 : n <= p) =>
gt_le_S n (S p) (le_lt_n_Sm n p H1)

: ∀ n m p,
n <= m →
m <= p →
n <= p →
S n <= S p.

Inversion was unable to invert this term, even though an inverse does
exist. To invert this, inversion needs to know to δ-reduce gt_le_S:

gt_le_S n m :=
(fun (H : ∀ n0 m0, n0 < m0 → S n0 <= m0) => H n m) . . .

: ∀ n m,
n < m →
S n <= m.

It then needs to swap the hypothesis with the conclusion in H to
produce the inverse:

gt_le_S−1 n m :=
(fun (H : ∀ n0 m0, S n0 <= m0 → n0 < m0) => H n m) . . .
: ∀ n m,

S n <= m →
n < m.

Inversion currently swaps subterms when it is not aware of any
symmetry properties about the inductive type. However, it does not
know when to δ-reduce function definitions. Furthermore, there are
many possible subterms to swap; for inversion to know to only swap
the subterms of H, it must have a better understanding of the structure
of the term. Both of these are ways to improve inversion.

52 proof repair by example

a challenge for generalization Generalization produced
an exponential number of candidates when generalizing a patch can-
didate with this type:

∀ n n0,
(fun m => n <= max m n0) n →
(fun m => n <= max n0 m) n

The goal was to generalize by n and produce a patch with this type:

∀ m0 n n0,
n <= max m0 n0 →
n <= max n0 m0.

The difficulty was in determining which occurrences of n to generalize.
The component needed to generalize only the highlighted occurrences:

fun n n0 (H0 : n <= max n0 n) =>
@eq_rect_r
nat
(max n0 n)
(fun n1 => n <= n1)
H0
(max n n0)
(max_comm n n0)

The simplest substitution strategy failed, and a more complex strategy
succeeded only after producing exponentially many candidates. While
this did not have a significant impact on time, this makes a good case
for semantics-aware substitution strategies. In this case, we know
from the type of the candidate and the type of eq_ind_r that these two
hypothesis types are equivalent (similarly for the conclusions):

(fun m => n <= max m n0) n
(fun n1 => n <= n1) (max n0 n)

The tool could search recursively for patches to find two patches that
bridge the two equivalent types:

p1 := fun n => max n0 n
p2 := fun n => max n n0

Then the candidate type is exactly this:

∀ n n0,
(fun n1 => n <= n1) (p2 n) →
(fun n1 => n <= n1) (p1 n)

Generalization should thus generalize the highlighted subterms and
the terms that have types constrained by those subterms. This would
produce a patch in one candidate:

fun m0 n n0 (H0 : n <= max n0 m0) =>
@eq_ind_r
nat
(max n0 m0) (* p1 m0 *)
(fun n1 => n <= n1) (* P *)
H0 (* : P (p1 m0) *)
(max m0 n0) (* p2 m0 *)
(max_comm m0 n0) (* : p1 m0 = p2 m0 *)

3.6 results 53

This strategy would find a patch for one of the pairs that Pumpkin

failed to generalize. This is a natural future direction.

3.5.3.3 Performance

Pumpkin performed well for all pairs, and when it failed, it failed fast.
The slowest success took 48 ms, and the slowest failure took 7 ms.11

Though proof terms were small (≤ 67 LOC), I found this promising.

3.6 results

To show how Pumpkin could have saved work for proof engineers, I
used the Pumpkin prototype on three case studies to emulate three
motivating scenarios from real proof developments:

1. Updating definitions within a project
(CompCert, Section 3.6.1)

2. Porting definitions between libraries
(Software Foundations, Section 3.6.2)

3. Updating proof assistant versions
(Coq Standard Library, Section 3.6.3)

The code I chose for these scenarios demonstrated different classes
of changes. For each case, I describe how Pumpkin configures the
procedure to use differencing and transformations for that class of
changes. My experiences with these scenarios suggest that patches are
useful and that both differencing and the transformations are effective
and flexible.

identifying changes I identified commits from popular projects
that demonstrated each scenario. I emulated each scenario as follows:

1. Replay an example proof update for Pumpkin.

2. Search the example for a patch using Pumpkin.

3. Apply the patch to fix a different broken proof.

My goal was to simulate incremental use of a repair tool, at the level
of a small change or a commit that follows best practices. I favored
commits with changes that I could isolate, and that fit into the scope
of changes supported by the Pumpkin prototype. When isolating
examples for Pumpkin, I replayed changes from the bottom up, as if
I was making the changes myself. This means that I did not always
make the same change as the user. For example, the real change from
Section 3.6.1 updated multiple definitions; I updated only one.

11 i7-4790K, at 4.00 GHz, 32 GB RAM

54 proof repair by example

Record int : Type :=
mkint {
val: Z;
range: 0 <= val < modulus

}.

Record int : Type :=
mkint {
val: Z;
range: -1 < val < modulus

}.

Figure 17: Old (left) and new (right) definitions of int in CompCert.

3.6.1 Updating Definitions

Coq programmers sometimes make changes to definitions that break
proofs within the same project. To emulate this use case, I identified a
CompCert commit [100] with a breaking change to int (Figure 17). I
used Pumpkin to find a patch that corresponds to the change in int.
The patch Pumpkin found fixed broken inductive proofs.

replay I used the proof of unsigned_range as the example for Pump-
kin. The proof failed with the new int:

Theorem unsigned_range:
∀ (i : int),
0 <= unsigned i < modulus.

Proof.
intros i. induction i using int_ind; auto.X

I replayed the change to unsigned_range:

intros i. induction i using int_ind. simpl. omega.

search I used Pumpkin to search the example for a patch that
corresponds to the change in int. It found a patch with this type:

∀ (z : Z),
-1 < z < modulus →
0 <= z < modulus

apply After changing the definition of int, the proof of the theorem
repr_unsigned failed on the last tactic:

Theorem repr_unsigned:
∀ (i : int),
repr (unsigned i) = i.

Proof.
. . . apply Zmod_small; auto.X

Manually trying omega—the tactic which helped us in the proof of
unsigned_range—did not succeed. I added the patch that Pumpkin

found to a hint database. The proof of the theorem repr_unsigned then
went through:

. . . apply Zmod_small; auto.

3.6 results 55

Fixpoint bin_to_nat (b: bin) :=
match b with
| B0 => O
| B2 b’ =>

2 * (bin_to_nat b’)
| B21 b’ =>

1 + 2 * (bin_to_nat b’)
end.

Fixpoint bin_to_nat (b: bin) :=
match b with
| B0 => O
| B2 b’ =>

(bin_to_nat b’) +
(bin_to_nat b’)

| B21 b’ =>
S ((bin_to_nat b’) +

(bin_to_nat b’))
end.

Figure 18: Definitions of bin_to_nat for Users A (left) and B (right).
Note that bin_to_nat uses fixpoints rather than primitive
eliminators, unlike most terms in this thesis.

Instance

This scenario used the search procedure instance for changes in con-
structors of an inductive type. Given such a change:

Inductive T := . . . | C : . . . → H → T
Inductive T’ := . . . | C : . . . → H’ → T’

Pumpkin differences two inductive proofs of theorems:

∀ (t : T), P t
∀ (t : T’), P t

for an isomorphism12 between the constructors:

. . . → H → H’

. . . → H’ → H

The proof engineer can apply these patches within the inductive case
that corresponds to the constructor C to fix other broken proofs that
induct over the changed type. Pumpkin uses this search procedure
instance for changes in constructors:

1: diff inductive constructors for goals
2: diff and transform to recursively search for changes in conclusions of the corre-

sponding case of the proof
3: if there are candidates then
4: try to invert the patch to find an isomorphism

3.6.2 Porting Definitions

Proof engineers sometimes port theorems and proofs to use definitions
from different libraries. To simulate this, I used Pumpkin to port two
solutions [4, 14] to an exercise in Software Foundations to each use
the other solution’s definition of the fixpoint bin_to_nat (Figure 18). I
demonstrate one direction; the opposite was similar.

12 If Pumpkin finds just one implication, it returns that.

56 proof repair by example

replay I used the proof of bin_to_nat_pres_incr from User A as
the example for Pumpkin. User A cut an inline lemma in an inductive
case and proved it using a rewrite:

assert (∀ a, S (a + S (a + 0)) = S (S (a + (a + 0)))).
- . . . rewrite ← plus_n_O. rewrite → plus_comm.

When I ported the solution by User A to use User B’s definition of
bin_to_nat, the application of this inline lemma failed. I changed the
conclusion of the lemma and removed the corresponding rewrite:

assert (∀ a, S (a + S a) = S (S (a + a))).
- . . . rewrite → plus_comm.

search I used Pumpkin to search for a patch that corresponds to
the change in bin_to_nat. It found an isomorphism:

∀ P b, P (bin_to_nat b) → P (bin_to_nat b + 0)
∀ P b, P (bin_to_nat b + 0) → P (bin_to_nat b)

apply After porting to User B’s definition, a rewrite in the proof of
the theorem normalize_correctness failed:

Theorem normalize_correctness:
∀ (b : bin),
nat_to_bin (bin_to_nat b) = normalize b.

Proof.
. . . rewrite → plus_0_r.X

Attempting the obvious patch from the difference in tactics—rewriting
by plus_n_O—failed. Applying the patch that Pumpkin found fixed
the broken proof:

. . . apply patch_inv. rewrite → plus_0_r.

In this case, since I ported User A’s definition to a simpler defini-
tion,13 Pumpkin found a patch that was not the most natural patch.
The natural patch would have been to remove the rewrite. This did
not occur when I ported User B’s definition, which suggests that in
the future, a proof repair tool may help inform novice users which
definition is simpler: it can factor the proof, then inform the user if
two factors are inverses. My Magic tutorial plugin14 implements a
prototype of this, based on lessons from this case study.

Instance

This scenario used the search procedure instance for changes in cases
of a fixpoint. Given such a change:

Fixpoint f . . . := . . . | g x
Fixpoint f’ . . . := . . . | g x’

13 User A uses *; User B uses +. For arbitrary n, 2 * n and n + n are not definitionally
equal, since 2 * n reduces to n + (n + 0), which does not reduce any further.

14 https://github.com/uwplse/magic

https://github.com/uwplse/magic

3.6 results 57

Definition divide p q :=
∃ r, p * r = q.

Definition divide p q :=
∃ r, q = r * p.

Figure 19: Old (left) and new (right) definitions of divide in Coq.

Pumpkin differences two versions of proofs of the theorems:

∀ . . ., P (f . . .)
∀ . . ., P (f’ . . .)

for an isomorphism that corresponds to the change:

∀ P, P x → P x’
∀ P, P x’ → P x

The proof engineer can apply these patches to fix other broken proofs
about the fixpoint.

The key feature that differentiates these from the patches we have
encountered so far is that these patches hold for all P; for changes in
fixpoint cases, the procedure generalizes candidates by P, not by its
arguments. Pumpkin uses this search procedure instance for changes
in fixpoint cases:

1: diff fixpoint cases for goals
2: diff and transform to recursively search within an intermediate lemma for a

change in conclusions
3: if there are candidates then
4: specialize and factor the candidate

generalize the factors by functions
try to invert the patch to find an isomorphism

For the prototype, I require the user to cut the intermediate lemma
explicitly and to pass its type and arguments. In the future, an
improved semantic differencing component can infer both the inter-
mediate lemma and the arguments: it can search within the proof for
some proof of a function that is applied to the fixpoint.

3.6.3 Updating Proof Assistant Versions

Coq sometimes makes changes to its standard library that break
backwards compatibility. To test the plausibility of using a patch
finding tool for proof assistant version updates, I identified a breaking
change in the Coq standard library [102]. The commit changed the
definition of divide prior to the Coq 8.4 release (Figure 19). The
change broke 46 proofs in the standard library. I used Pumpkin to
find an isomorphism that corresponds to the change in divide. The
isomorphism Pumpkin found fixed broken proofs.

replay I used the proof of mod_divide as the example for Pumpkin.
The proof broke with the new divide:

58 proof repair by example

Theorem mod_divide:
∀ a b,
b~=0 →
(a mod b == 0 ↔ (divide b a)).

Proof.
. . . rewrite (div_mod a b Hb) at 2.X

I replayed changes to mod_divide:
. . . rewrite mul_comm. symmetry.
rewrite (div_mod a b Hb) at 2.

search I used Pumpkin to search within the example patched
proof for a patch that corresponds to the change in divide. It found
an isomorphism:
∀ r p q, p * r = q → q = r * p
∀ r p q, q = r * p → p * r = q

apply The proof of the theorem Zmod_divides broke after rewriting
by the changed theorem mod_divide:
Theorem Zmod_divides:
∀ a b,
b<>0 →
(a mod b = 0 ↔ ∃ c, a = b * c).

Proof.
. . . split; intros (c,Hc); exists c; auto.X

Adding the patches Pumpkin found to a hint database made the proof
go through:

. . . split; intros (c,Hc); exists c; auto.

Instance

This scenario used the search procedure instance for changes in de-
pendent arguments to constructors. Pumpkin differences two versions
of a proof that apply the same constructor to different dependent
arguments:

. . . (C (P x)) . . .

. . . (C (P’ x)) . . .

for an isomorphism between the arguments:
∀ x, P x → P’ x
∀ x, P’ x → P x

The proof engineer can apply these patches to patch proofs that apply
the constructor (here, to fix proofs that apply divide to some r).

So far, we have encountered changes of this form as arguments to
an induction principle; in this case, the change is an argument to a
constructor. A patch between arguments to an induction principle
maps directly between conclusions of the new and old theorem with-
out induction; a patch between constructors does not. For example,
for divide, we can find a patch with this form:

3.7 conclusion 59

∀x, P x → P’ x

However, without using the induction principle for exists, we can’t
use that patch to prove this:

(∃ x, P x) → (∃ x, P’ x)

This changes the goal type that semantic differencing determines.
Pumpkin uses this search procedure instance for changes in con-

structor arguments:

1: diff constructor arguments for goals
2: diff and transform to recursively search within those arguments for changes in

conclusions
3: if there are candidates then
4: generalize the candidate

factor and try to invert the patch to find an isomorphism

For the prototype, the model of constructors for the semantic differ-
encing component is limited, so Pumpkin asks the user to provide the
type of the change in argument (to guide line 2). Extending semantic
differencing may help remove this restriction.

3.7 conclusion

This thesis set out to show that:

changes in programs, specifications, and proofs can carry
information that a tool can extract, generalize, and apply
to fix other proofs broken by the same change. A tool that
automates this can save work for proof engineers relative
to reference manual repairs in practical use cases.

With Pumpkin, so far, it is fair to say that:

changes in the content of programs, specifications, and
proofs can carry information that a tool can extract, gen-
eralize, and sometimes apply to fix other proofs broken
by the same change (Sections 3.2, 3.3, and 3.4). A tool
that automates this (Section 3.5) could have saved work
for proof engineers relative to reference manual repairs in
a few practical use cases (Section 3.6).

Or, informally, there is some reason to believe that verifying a modified
system could have been easier than verifying the original the first time
around, in a few practical use cases.

This is progress, but it is not quite there yet. As I have shown you
throughout this chapter, the Pumpkin prototype is too limited in both
theory and implementation. Most notably, the Pumpkin prototype
has limited support for patch application and supports a narrow

60 proof repair by example

class of changes in an ad hoc manner. And as I mentioned earlier,
without considering the extension from the next chapter, the Pumpkin

prototype includes very little support for tactics.
The next chapter will introduce a repair tool that supports a broad,

complementary class of changes beyond that supported by Pumpkin

alone. In parallel, it will introduce new technologies that address
many of the limitations seen in this chapter. In doing so, it will
show how the thesis holds on a broad class of changes, with more
principled and better integrated support for patch application and
tactic generation. It will show how all of this helps proof engineers in
the real world—not just retroactively, but in real time.

4
P R O O F R E PA I R A C R O S S T Y P E E Q U I VA L E N C E S

This chapter presents the Pumpkin Pi extension to the Pumpkin PatchPumpkin PatchPumpkin Patch

proof repair plugin suite.1 Pumpkin Pi is a plugin that supports
proof repair across a broad class of changes in datatypes called type
equivalences (Section 4.2.2), thereby supporting a large class of practical
repair scenarios. Proof repair across type equivalences with Pumpkin

Pi makes progress on two challenges that PumpkinPumpkinPumpkin had left open:

1. Pumpkin supported a very limited classes of changes in datatypes,
namely those that do not change structure. Similar tools devel-
oped since still supported only a predefined set of changes [142,
165]. As the REPLicaREPLicaREPLica user study showed, these were not in-
formed by the current needs of proof engineers.

2. Pumpkin had only preliminary integration with typical proof
engineering workflows. Similar tools developed since likewise
lacked support for workflow integration [136, 142], or imposed
additional proof obligations like always proving relations corre-
sponding to changes [151].

challenge 1 : flexible type support The case studies in Sec-
tion 4.6—summarized in Table 1 on page 97—show that Pumpkin

Pi is flexible enough to support a wide range of proof repair use
cases. In general, Pumpkin Pi can support any change described by an
equivalence—a scope that even includes changes like adding indices to
datatypes. Pumpkin Pi takes the equivalence in a deconstructed form
that I call a configuration. The configuration expresses to the proof term
transformation how to translate terms defined over the old version
of a type to refer only to the new version, and how to do so without
breaking definitional equality. The proof engineer can write this
configuration in Coq and feed it to Pumpkin Pi (manual configuration
in Table 1), configuring Pumpkin Pi to support the change.

challenge 2 : workflow integration Research on workflow
integration for proof repair tools is in its infancy. Pumpkin Pi is built

1 I annotate each claim in this chapter to which code is relevant with a circled number
like 1 . These circled numbers are links to code, and are detailed in a guide that can
be found here: https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/GUIDE.md.

61

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/GUIDE.md

62 proof repair across type equivalences

Inductive list T : Type :=
| nil : list T
| cons : T → list T → list T.

Inductive list T : Type :=
| cons : T → list T → list T
| nil : list T.

Figure 20: A change from the old version (left) to the new version
(right) of list. Recall that list is an inductive datatype that
is either empty (the nil constructor), or the result of placing
an element in front of another list (the cons constructor).
The change swaps these constructors (orange).

with workflow integration in mind. For example, Pumpkin Pi produces
suggested proof scripts (rather than proof terms) for repaired proofs,
a challenge highlighted in the previous chapter, in other existing
work [142], and in QED at Large. In addition, Pumpkin Pi implements
search procedures that automatically discover configurations and
prove the equivalences they induce for four different classes of changes
(automatic configuration in Table 1), decreasing the burden of proof
obligations imposed on the proof engineer. My partnership with
an industrial proof engineer has informed other changes to further
improve workflow integration (Sections 4.5 and 4.6).

bringing it together In the frame of the thesis, proof repair
across type equivalences is a new form of proof automation that
extracts general information from breaking changes in the datatypes
that programs, specifications, and proofs refer to, then applies that
information to fix any program, specification, or proof broken by that
change (Section 4.2). This extraction, generalization, and application
works at the level of proof terms, through a combination of novel
semantic differencing algorithms over datatypes (Section 4.3) and a
configurable proof term transformation (Section 4.4). Pumpkin Pi auto-
mates this process, with additional support for manual configuration
by proof engineers and for integration with typical proof engineering
workflows (Section 4.5). Case studies show that Pumpkin Pi can save
and in several cases has saved work for proof engineers on major proof
developments and on changes that matter (Section 4.6).

4.1 motivating example

Consider a simple example of using Pumpkin Pi: repairing proofs
after swapping the two constructors of the list datatype (Figure 20).
This is inspired by a similar change from a user study of proof en-
gineers (Section 4.6). Even such a simple change can cause trouble,
as in the proof of the lemma rev_app_distr from the Coq standard
library (Figure 21). This lemma says that appending (++) two lists and
reversing (rev) the result behaves the same as appending the reverse
of the second list onto the reverse of the first list. The proof script

4.1 motivating example 63

Lemma rev_app_distr {A} :
∀ (x y : list A),
rev (x ++ y) = rev y ++ rev x.

Proof. (* by induction over x and y *)
induction x as [| a l IHl].
(* x nil: *) induction y as [| a l IHl].
(* y nil: *) simpl. auto.
(* y cons *) simpl. rewrite app_nil_r; auto.
(* both cons: *) intro y. simpl.
rewrite (IHl y). rewrite app_assoc; trivial.

Defined.

Figure 21: The proof of the lemma rev_app_distr from the Coq stan-
dard library. Comments mine for clarity.

works by induction over the input lists x and y: In the base case for
both x and y, the result holds by reflexivity. In the base case for x and
the inductive case for y, the result follows from the existing lemma
app_nil_r. Finally, in the inductive case for both x and y, the result
follows by the inductive hypothesis and the existing lemma app_assoc.

When we change the list type, this proof no longer works. To
repair this proof with Pumpkin Pi, we run this command:

Repair Old.list New.list in rev_app_distr.

assuming the old and new list types from Figure 20 are in modules
Old and New. This suggests a proof script that succeeds (in light blue
to denote Pumpkin Pi produces it automatically):

Proof. (* by induction over x and y *)
intros x. induction x as [a l IHl|]; intro y0.
- (* both cons: *) simpl. rewrite IHl. simpl.
rewrite app_assoc. auto.

- (* x nil: *) induction y0 as [a l H|].
+ (* y cons: *) simpl. rewrite app_nil_r. auto.
+ (* y nil: *) auto.

Defined.

where the dependencies (rev, ++, app_assoc, and app_nil_r) have also
been updated automatically 1 . If we would like, we can manually
modify this to something that more closely matches the style of the
original proof script:

Proof. (* by induction over x and y *)
induction x as [a l IHl|].
(* both cons: *) intro y. simpl.
rewrite (IHl y). rewrite app_assoc; trivial.
(* x nil: *) induction y as [a l IHl|].
(* y cons: *) simpl. rewrite app_nil_r; auto.
(* y nil: *) simpl. auto.

Defined.

We can even repair the entire list module from the Coq standard
library all at once by running the Repair module command 1 . When
we are done, we can get rid of Old.list.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v

64 proof repair across type equivalences

The key to success is taking advantage of Coq’s structured proof
term language: Recall that Coq compiles every proof script to a proof
term in the rich functional programming language Gallina—Pumpkin

Pi repairs that term. Pumpkin Pi then decompiles the repaired proof
term (with optional hints from the original proof script) back to a
suggested proof script that the proof engineer can maintain.

In contrast, updating the poorly structured proof script directly
would not be straightforward. Even for the simple proof script above,
grouping tactics by line, there are 6! = 720 permutations of this
proof script. It is not clear which lines to swap since these tactics do
not have a semantics beyond the searches their evaluation performs.
Furthermore, just swapping lines is not enough: even for such a simple
change, we must also swap arguments, so that:

induction x as [|a l IHl].

becomes:

induction x as [a l IHl|].

Valentin Robert’s thesis [142] describes the challenges of repairing
tactics in detail. Pumpkin Pi’s approach circumvents this challenge.

4.2 approach

Pumpkin Pi can do much more than permute constructors. Given an
equivalence between types A and B, Pumpkin Pi repairs functions and
proofs defined over A to instead refer to B. It does this in a way that
allows for removing references to A, which is essential for proof repair,
since A may be an old version of an updated type.

The proof engineer can use Pumpkin Pi (Section 4.5.2) to automati-
cally repair proofs in response to a broad class of changes in datatypes.
Pumpkin Pi in particular repairs proofs in response to changes that
correspond to type equivalences [154], or pairs of functions that map
between two types (possibly with some additional information) and
are mutual inverses (Section 4.2.2).2 Looking back to the thesis state-
ment, the information shows up in the difference between versions of
the changed datatype. With automatic configuration, Pumpkin Pi can
extract and generalize that information to a type equivalence, then
apply it to fix other broken proofs. With manual configuration, the
proof engineer extracts and generalizes that information herself, but
Pumpkin Pi can still apply the result to fix other broken proofs.

Like the original PumpkinPumpkinPumpkin prototype, Pumpkin Pi also does this
using a combination of differencing and proof term transformations.

2 Every equivalence induces something called an adjoint equivalence [154], and those
adjoint equivalences can be nicer to work with. Jasper proved this fact for me in a
way that does not rely on any axioms beyond those assumed by Coq 23 , and Nate
used that proof to build machinery for Pumpkin Pi to derive the adjoint equivalence
from the equivalence itself 10 .

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/theories/Adjoint.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/search/equivalence.ml

4.2 approach 65

Figure 22: The workflow for Pumpkin Pi.

The differencing algorithms (Section 4.2.3) run in response to a break-
ing change in a datatype that corresponds to a type equivalence. When
they succeed, the diff that they find is that type equivalence. The proof
engineer can also pass the type equivalence to Pumpkin Pi directly,
effectively doing differencing by hand. In either case, the proof term
transformation (Section 4.2.4) then transforms a proof term defined
over the old version of the datatype directly to a proof term defined
over the new version of the datatype. Pumpkin Pi further supports
proof script integration and other features for better workflow integra-
tion (Section 4.5), with real payoffs for proof engineers (Section 4.6).

4.2.1 Workflow: Configure, Transform, Decompile

Pumpkin Pi extends Pumpkin Patch with a new command called
Repair, with the syntax:

Repair old_type new_type in old_proof.

where old_type and new_type are the old and new versions of the
changed datatype, and old_proof is the old version of the proof broken
by that change in datatype. This invokes the Pumpkin Pi plugin, which
updates the old version of the proof to some new version of the proof
defined over the new version of the datatype, then defines it as a
new proof term and suggests a corresponding new proof script if
successful. All terms that Pumpkin Pi defines are type checked in the
end, so Pumpkin Pi does not extend the TCB.

Figure 22 shows how this comes together when the proof engineer
invokes Pumpkin Pi:

1. The proof engineer Configures Pumpkin Pi, either manually or
automatically.

2. The configured Transform transforms the old proof term into
the new proof term.

3. Decompile suggests a new proof script.

66 proof repair across type equivalences

swap T (l : Old.list T)
: New.list T

:=
Old.list_rect T
(fun _ => New.list T)
New.nil
(fun t _ (IHl: New.list T) =>
New.cons T t IHl)

l.

Lemma section:
∀ T (l : Old.list T),
swap−1 T (swap T l) = l.

Proof.
intros T l. symmetry.
induction l as [|t l0 H].
- auto.
- simpl. rewrite ← H. auto.

Qed.

swap−1 T (l : New.list T)
: Old.list T

:=
New.list_rect T
(fun _ => Old.list T)
(fun t _ (IHl: Old.list T) =>
Old.cons T t IHl)

Old.nil
l.

Lemma retraction:
∀ T (l : New.list T),
swap T (swap−1 T l) = l.

Proof.
intros T l. symmetry.
induction l as [t l0 H|].
- simpl. rewrite ← H. auto.
- auto.

Qed.

Figure 23: Two functions between Old.list and New.list (top) that
form an equivalence (bottom).

There are currently four search procedures for automatic configura-
tion implemented in Pumpkin Pi (see Table 1 on page 97). Manual
configuration makes it possible for the proof engineer to configure the
transformation to any equivalence, even without a search procedure.

The breaking change to Figure 20 in Section 4.1, for example, used
automatic configuration. When we invoked Pumpkin Pi:

Repair Old.list New.list in rev_app_distr.

it invoked a search procedure that differences Old.list and New.list,
then transformed rev_app_distr to use New.list in place of Old.list.
In the end, it suggested a proof script that we could use going forward.

4.2.2 Scope: Type Equivalences

Pumpkin Pi automatically repairs proofs in response to changes in
types that correspond to type equivalences. When a type equivalence
between types A and B exists, we can say that those types are equiv-
alent (denoted A ' B). Figure 23 shows a type equivalence between
the two versions of list from Figure 20 that Pumpkin Pi discovered
and proved automatically 1 .

To give intuition for what kinds of changes can be described by
equivalences, I preview two changes. See Table 1 on page 97 for more.

factoring out constructors Consider changing the type I
to the type J in Figure 24. J can be viewed as I with its two construc-
tors A and B pulled out to a new argument of type bool for a single

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v

4.2 approach 67

Inductive I :=
| A : I
| B : I.

Inductive J :=
| makeJ : bool → J.

Figure 24: The old type I (left) is either A or B. The new type J (right)
is I with A and B factored out to bool (orange).

Inductive list T : Type :=
| nil : list T
| cons : T →

list T →
list T.

Inductive vector T : nat → Type :=
| nil : vector T O
| cons : T → ∀ (n : nat),

vector T n →
vector T (S n).

Figure 25: A vector (right) is a list (left) indexed by its length (orange).
Vectors effectively make it possible to enforce length invari-
ants about lists at compile time.

constructor. With Pumpkin Pi, the proof engineer can repair functions
and proofs about I to instead use J, as long as she configures Pumpkin

Pi to describe which constructor of I maps to true and which maps
to false. This information about constructor mappings induces an
equivalence I ' J across which Pumpkin Pi repairs functions and
proofs. File 2 shows an example of this, mapping A to true and B to
false, and repairing proofs of De Morgan’s laws.

adding a dependent index At first glance, the word equiva-
lence may seem to imply that Pumpkin Pi can support only changes
in which the proof engineer does not add or remove information.
But equivalences are more powerful than they may seem. Consider,
for example, changing a list to a length-indexed vector (Figure 25).
Since Σ(l:list T).length l = n ' vector T n, Pumpkin Pi can re-
pair functions and proofs about lists to functions and proofs about
vectors of particular lengths 3 . From the proof engineer’s perspective,
after moving from list to vector, to fix her functions and proofs, she
must prove invariants about the lengths of her lists. Pumpkin Pi makes
it easy to separate out that proof obligation, then automates the rest.

A more formal result about the expressiveness of equivalences holds
inside of homotopy type theory: a type theory with univalence, which
states that equivalence is equivalent to propositional equality. Ho-
motopy type theory makes it possible to construct quotient types; with
the help of these quotient types, it is possible to form an equivalence
from a relation, even when the relation is not an equivalence [9]. A less
general result holds in Coq, which lacks quotient types: it is possible
to achieve a similar outcome and use Pumpkin Pi for changes that add
or remove information whenever those changes can be expressed as
equivalences between Σ types or sum types. With some creativity, this
can even support adding new constructors to types, though not yet in
a way that saves work proof engineers.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v

68 proof repair across type equivalences

4.2.3 Differencing: Equivalences from Changes

Differencing in Pumpkin Pi is what configures the proof term trans-
formation to a particular type equivalence. By default, when the
proof engineer invokes the Repair command, differencing runs auto-
matically. For example, when we invoked:

Repair Old.list New.list in rev_app_distr.

in Section 4.1, differencing discovered and proved the equivalence
in Figure 23. In total, Pumpkin Pi currently implements four search
procedures for automatic configuration; I will explain these more in
Sections 4.3 and 4.5. Each search procedure automates differencing
for an entire class of changes that can be described by type equiva-
lences. In the end, it returns a configuration that corresponds to the
equivalence (see Section 4.3), along with the equivalence itself.

Manual configuration makes it possible for the proof engineer to
skip differencing, so that Pumpkin Pi is not limited by the search
procedures currently implemented, nor by the undecidability of dif-
ferencing arbitrary types. Manual configuration supports any change
that can be described by a type equivalence. To configure Pumpkin Pi
manually, the proof engineer can pass the configuration corresponding
to the equivalence to Pumpkin Pi’s Configure Repair command before
invoking Repair. This is what I did for the change in Figure 24 2 .

summary In summary, differencing has the following specification:

• Inputs: types A and B, assuming:

– there is a type equivalence describing the change from A
to B (possibly with some new information), and

– the corresponding change is in a class currently supported
by a search procedure for automatic configuration.

• Outputs:

– functions f and g,

– proofs section and retraction, and

– a configuration c,

guaranteeing:

– f and g form an equivalence that describes the change from
A to B (possibly with some new information),

– section and retraction prove that f and g form an equiva-
lence, and

– c is a decomposition of the equivalence.

The new information for the change in Figure 25, for example, is the
length of the list. Differencing discovers the equivalence corresponding

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/constr_refactor.v

4.2 approach 69

to this change, as well as a configuration c that is a decomposition
of this equivalence. Section 4.3 describes what it means for c to be a
decomposition of the equivalence, and proves that this is possible for
any equivalence. Manual configuration, on the other hand, takes in
the configuration directly. In either case, the transformation uses this
configuration to automatically repair broken proofs.

4.2.4 Transformation: Transport with a Twist

Pumpkin Pi repairs proofs in response to these changes by implement-
ing and automating a kind of proof reuse known as transport from
homotopy type theory, but in a way that is suitable for repair. In
homotopy type theory, transport is essentially a specialized elimina-
tor for rewriting across equivalences. In particular, it takes a term t
and produces a term t′ that is the same as t modulo an equivalence
A ' B. If t is a function, then t′ behaves the same way modulo the
equivalence; if t is a proof, then t′ proves the same theorem the same
way modulo the equivalence.

The details of transport in homotopy type theory can be found in
the homotopy type theory book [154], and in Section 5.1.4. Transport is
realizable as a function in homotopy type theory—that is, it is internal—
precisely because of univalence. But univalence is a property that
Coq’s type theory CICω lacks! It is possible to finitely approximate
internal transport in Coq using a special framework [150], but this
sometimes introduces axioms, thereby extending the TCB. Instead, the
Pumpkin Pi transformation assumes a univalent metatheory in which
to interpret its specification, but does not introduce any axioms to
Coq—that is, it implements transport externally.

In this thesis, when transport across A ' B takes t to t′, I say
that t and t′ are equal up to transport across that equivalence (denoted
t ≡A'B t′).3 In Section 4.1, the original append function ++ over Old.
list and the repaired append function ++ over New.list that Pumpkin

Pi produces are equal up to transport across the equivalence from
Figure 23, since (by app_ok 1):

∀ T (l1 l2 : Old.list T),
swap T (l1 ++ l2) = (swap T l1) ++ (swap T l2).

The original rev_app_distr is equal to the repaired proof up to trans-
port, since both prove the same thing the same way up to the equiva-
lence, and up to the changes in ++ and rev.

In univalent type theories, transport works by applying the func-
tions that make up the equivalence to convert inputs and outputs
between types. Even if we had univalence, this approach would not be
suitable for repair, since it would not make it possible to remove the

3 This notation should be interpreted in a univalent metatheory. Note also that, for
equivalent A and B, there can be many equivalences A ' B. Equality up to transport
is across a particular equivalence, but I erase this in the notation.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v

70 proof repair across type equivalences

old type A. Pumpkin Pi implements transport externally, in a way that
allows for removing references to A—by proof term transformation.

summary In summary, the transformation has the following speci-
fication:

• Inputs:

– types A and B,

– the configuration c, and

– a proof term t,

assuming c is a decomposition of a type equivalence describing
the change from A to B (possibly with some new information).

• Outputs: a proof term t′, guaranteeing:

– t′ refers to B in place of A, and

– t and t′ are equal up to transport along the equivalence
formed by c.

This specification glazes over a few important issues, most notably
that B may refer to A (so Pumpkin Pi has specialized termination
logic), and that it may be desirable to port only some instances of A to
B (but Pumpkin Pi by default ports all instances). I discuss these more
in Sections 4.4 and 4.5.

4.3 differencing

Differencing—whether done by the tool (automatic configuration) or
by the proof engineer (manual configuration)—identifies and proves
a type equivalence. But differencing further decomposes that equiva-
lence into a form called a configuration. The configuration is the key
to building a proof term transformation that implements transport in
a way that is suitable for repair.

Each configuration is a deconstruction of a particular equivalence
A ' B. In particular, it deconstructs the equivalence into things that
talk about A, and things that talk about B. It does so in a way that
hides details specific to the equivalence, like the order or number of
arguments to an eliminator or type.

At a high level, the configuration helps the transformation achieve
two goals:

1. preserve equality up to transport across the equivalence between
A and B (Section 4.3.1), and

2. produce well-typed terms (Section 4.3.2).

To differencing, this configuration is a pair of pairs:

4.3 differencing 71

((DepConstr, DepElim), (Eta, Iota))

each of which corresponds to one of the goals: DepConstr and DepElim
define how to transform dependent constructors and dependent elimina-
tors, thereby preserving the equivalence, and Eta and Iota define how
to transform η-expansion and ι-reduction of dependent constructors
and dependent eliminators, thereby producing well-typed terms.

The connection between the configuration parts and constructors
and eliminators is an analogy—though one with formal meaning by
way of category theory (Section 4.3.3.1). Configurations and equiva-
lences are equally expressive: every configuration induces an equiva-
lence, and every equivalence induces a configuration (Section 4.3.3.2).
Each search procedure for automatic configuration produces both
the configuration and the equivalence that it induces (Section 4.3.4).
Manual configuration takes as input the configuration directly.

All terms that I introduce in this section are in CICω with primitive
eliminators. Section 4.5 describes how I scale this from CICω to Coq.

4.3.1 Preserving the Equivalence

To preserve the equivalence, the configuration maps terms over A to
terms over B by viewing each term of type B as if it were an A. This
way, the transformation in Section 4.4 can replace values of A with
values of B, and inductive proofs about A with inductive proofs about
B, all without changing the order or number of arguments.

The two configuration parts responsible for this are DepConstr and
DepElim (dependent constructors and dependent eliminators). These
describe how to construct and eliminate A and B, wrapping the types
with a common inductive structure. The transformation requires
the same number of dependent constructors and cases in dependent
eliminators for A and B, even if A and B themselves are inductive
types with different numbers of constructors (A and B need not even
be inductive; see Sections 4.3.3 and 4.6).

For the list change from Section 4.1, the configuration that Pump-
kin Pi discovers uses the dependent constructors and eliminators
in Figure 26. The dependent constructors for Old.list are the nor-
mal constructors with the order unchanged, while the dependent
constructors for New.list swap the order of constructors. Similarly,
the dependent eliminator for Old.list is the normal eliminator for
Old.list, while the dependent eliminator for New.list swaps cases.

As the name hints, these constructors and eliminators can be de-
pendent. For example, let B be the type of vectors of some arbitrary,
unspecified length, packed into a Σ type:

Σ(n : nat).vector T n

72 proof repair across type equivalences

(* nil *)
DepConstr(0, Old.list T)
: Old.list T

:= Constr(0, Old.list T).

(* cons *)
DepConstr(1, Old.list T) t l
: Old.list T

:= Constr (1, Old.list T) t l.

(* induction over lists *)
DepElim(l, P) { pnil, pcons }
: P l

:= Elim(l, P) { pnil, pcons }.

(* nil *)
DepConstr(0, New.list T)
: New.list T

:= Constr(1, New.list T).

(* cons *)
DepConstr(1, New.list T) t l
: New.list T

:= Constr(0, New.list T) t l.

(* induction over lists *)
DepElim(l, P) { pnil, pcons }
: P l

:= Elim(l, P) { pcons, pnil }.

Figure 26: The dependent constructors and eliminators for old (left)
and new (right) list, with the difference in orange.

Pumpkin Pi can port proofs across the equivalence between this choice
of B and list T 3 . The dependent constructors Pumpkin Pi discovers
for B pack the index into an existential, like:

DepConstr(0, B) : B :=
∃ (Constr(0, nat)) (Constr(0, vector T)).

and the eliminator it discovers eliminates the projections:

DepElim(b, P) { f0 f1 } : P (∃ (πl b) (πr b)) :=
Elim(πr b, λ(n : nat)(v : vector T n).P (∃ n v)) {
f0,
(λ(t : T)(n : nat)(v : vector T n).f1 t (∃ n v))

}.

In both these examples, the interesting work moves into the config-
uration: the configuration for the first swaps constructors and cases,
and the configuration for the second maps constructors and cases over
list T to constructors and cases over Σ(n : nat).vector T n. That
way, the transformation need not add, drop, or reorder arguments—it
can truly be generic over type equivalences. Furthermore, both ex-
amples use automatic configuration, so differencing in Pumpkin Pi’s
Configure component discovers DepConstr and DepElim from just the
types A and B, taking care of even the difficult work.

4.3.2 Producing Well-Typed Terms

The other configuration parts Eta and Iota deal with producing well-
typed terms, in particular by transporting equalities. Recall that
CICω is an intensional type theory, and so distinguishes between
definitional and propositional equality. When a datatype changes,
sometimes, definitional equalities defined over the old version of that
type must become propositional. A naive proof term transformation
may fail to generate well-typed terms if it does not account for this.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v

4.3 differencing 73

Inductive nat :=
| O : nat
| S : nat → nat.

Inductive positive :=
| xI : positive → positive
| xO : positive → positive
| xH : positive.

Inductive N :=
| N0 : N
| Npos : positive → N.

Figure 27: A unary natural number nat (left) is either zero (0) or the
successor of some other natural number (S). A binary
natural number N (right) is either zero (N0) or a positive
binary number (Npos), where a positive binary number is
either 1 (xH), or the result of shifting left and adding 1

(xI) or 0 (xO). While nat and N are equivalent, they have
different inductive structures. Consequentially, definitional
equalities over nat may become propositional over N.

Otherwise, if the transformation transforms a term t : T to some t′ : T′,
it does not necessarily transform T to T′ [151].

Eta and Iota describe how to transport equalities. More formally,
they define η-expansion and ι-reduction of A and B, which may be
propositional rather than definitional, and so must be explicit in the
transformation. η-expansion describes how to expand a term to apply
a constructor to an eliminator in a way that preserves propositional
equality, and is important for defining dependent eliminators [121].
ι-reduction (β-reduction for inductive types) describes how to reduce
an elimination of a constructor [120].

The configuration for the change from lists to vectors of some length
has propositional Eta over B. It uses η-expansion for Σ:
Eta(B) := λ(b : B).∃ (πl b) (πr b).

which is propositional and not definitional in Coq. Thanks to this, we
can forego the assumption that our language has primitive projections
(definitional η for Σ).

Each Iota—one per constructor—describes and proves the behavior
of ι-reduction for DepElim on the corresponding case. This is needed,
for example, to port proofs about unary numbers nat to proofs about
binary numbers N (Figure 27). While we can define DepConstr and
DepElim to induce an equivalence between them 5 , we run into trouble
reasoning about applications of DepElim, since proofs about nat that
hold by reflexivity do not necessarily hold by reflexivity over N. For
example, in Coq, while S (n + m) = S n + m holds by reflexivity over
nat, when we define + with DepElim over N, the corresponding theorem
over N does not hold by reflexivity.

To transform proofs about nat to proofs about N, we must transform
definitional ι-reduction over nat to propositional ι-reduction over N.
For our choice of DepConstr and DepElim, ι-reduction is definitional
over nat, since a proof of:

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v

74 proof repair across type equivalences

Π P p0 pS (n : nat),
DepElim(DepConstr(1, nat) n, P) { p0, pS } =
pS n (DepElim(n, P) { p0, pS }).

holds by reflexivity. Iota for nat in the S case is a rewrite by that proof
by reflexivity 5 , with type:

Π P p0 pS (n : nat) (Q: P (DepConstr(1, nat) n) → s),
Iota(1, nat, Q) :
Q (pS n (DepElim(n, P) { p0, pS })) →
Q (DepElim(DepConstr(1, nat) n, P) { p0, pS }).

In contrast, ι for N is propositional, since the theorem:

Π P p0 pS (n : N),
DepElim(DepConstr(1, N) n, P) { p0, pS } =
pS n (DepElim(n, P) { p0, pS }).

no longer holds by reflexivity. Iota for N is a rewrite by the proposi-
tional equality that proves this theorem 5 , with type:

Π P p0 pS (n : N) (Q: P (DepConstr(1, N) n) → s),
Iota(1, N, Q) :
Q (pS n (DepElim(n, P) { p0, pS })) →
Q (DepElim(DepConstr(1, N) n, P) { p0, pS }).

By replacing Iota over nat with Iota over N, the transformation re-
places rewrites by reflexivity over nat to rewrites by propositional
equalities over N. That way, DepElim behaves the same over nat and N.

Taken together over both A and B, Iota describes how the induc-
tive structures of A and B differ. The transformation requires that
DepElim over A and over B have the same structure as each other, so
if A and B themselves have the same inductive structure (if they are
ornaments [108]), then if ι is definitional for A, it will be possible to
choose DepElim with definitional ι for B. Otherwise, if A and B (like
nat and N) have different inductive structures, then definitional ι over
one would become propositional ι over the other.

4.3.3 Specifying Correct Configurations

Choosing a configuration necessarily depends in some way on the
proof engineer’s intentions: there can be infinitely many equivalences
that correspond to a change, only some of which are useful (for
example 7 , any A is equivalent to unit refined by A). And there can
be many configurations that correspond to an equivalence, some of
which will produce terms that are more useful or efficient than others
(consider DepElim converting through several intermediate types).

Thankfully, while it is not possible to control for intentions, it is
possible to specify what it means for a chosen configuration to be
correct. In particular, the analogy tying the configuration to construc-
tors and eliminators has meaning in terms of what in category theory
are known as initial algebras of endofunctors, and correctness—that con-
figurations and equivalences are isomorphic—follows by Lambek’s

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/refine_unit.v

4.3 differencing 75

Figure 28: The categorical representation of a configuration for equiv-
alent types A and B in terms of initial algebras.

theorem (Section 4.3.3.1). A more syntactic version of this claim can be
used to specify and prove correctness of configurations in a univalent
metatheory, or on an ad hoc basis in CICω (Section 4.3.3.2).

historical note When I met with Michael Shulman over coffee
a few years ago, he said that a preliminary version of this work “feels
like univalence,” “feels like coherence,” and “feels like an endofunc-
tor.” All three were correct! But I did not understand the connection
to endofunctors by way of Lambek’s until a few months before writ-
ing this thesis. Carlo Angiuli and Anders Mörtberg identified this
connection, and Carlo explained it to me. It is quite beautiful!

But it is also quite preliminary. I hope this connection as presented in
Section 4.3.3.1 will help communicate some of the categorical intuition
behind why all of this works, but I will not be surprised if I get some
of the details wrong. Please regard this as a bit speculative, unlike the
syntactic presentation in Section 4.3.3.2, which is already published.

4.3.3.1 Categorical Intuition for Correctness

Configurations have meaning in terms of initial algebras [122], which
in homotopy type theory represent inductive types [154]. This is why
the configuration is most natural when the types A and B are inductive.
But the configuration is in fact more general than that—it can support
any two equivalent types A and B (by Lambek’s theorem).

Figure 28 shows this for an arbitrary configuration for an equiv-
alence between A and B. Here, F A is the inductive structure of
A. DepConstr maps from F A to A, and Eta maps from A back to
F A. DepElim (not pictured explicitly) is the arrow corresponding to
DepConstr defined over the analogous diagram lifted to A → s for
some sort s (also not pictured explicitly); by uniqueness of f, any f
must pass through a function isomorphic to DepElim. Iota (also not

76 proof repair across type equivalences

pictured explicitly) is used in the proof that the diagram commutes.
The configuration parts for B are similar.

For example, fixing A as nat, F A is 1 + nat: the sum of the unit
type and nat. Going from F A → A, the left injection maps to the
O constructor, and the right injection maps to the S constructor. The
inverse is essentially4 the identity function. Any f must pass through
the eliminator for nat, which would show up explicitly in place of the
constructors in the diagram lifted to nat→ s. The diagram commutes
trivially, since the S case of the eliminator reduces.

This diagram gives intuition for how the configuration splits up an
arbitrary equivalence between A and B into parts that talk about A
and B separately. All the transformation in Section 4.4 does is follow
the arrows in the diagram to get from A directly to B. But in order to
do that, it needs to handle the nuances of definitional equality and
dependent types in CICω—for example, by explicitly representing
and porting the proof that the diagram commutes. The syntactic
presentation in the next section handles those nuances.

4.3.3.2 Correctness, Syntactically

The categorical definition may help with some of the intuition, but
it does not help with validating correct configurations. Fortunately,
it is also possible to specify syntactically what it means for a chosen
configuration to be correct: Fix a configuration. Let f be the function
that uses DepElim to eliminate A and DepConstr to construct B, and
let g be similar. Figure 29 specifies the correctness criteria for the
configuration. These criteria relate DepConstr, DepElim, Eta, and Iota
in a way that preserves equivalence coherently with equality.

equivalence To preserve the equivalence (Figure 29, top), to-
gether DepConstr and DepElim must form an equivalence (section and
retraction must hold for f and g). DepConstr over A and B must
be equal up to transport across that equivalence (constr_ok), and
similarly for DepElim (elim_ok). Intuitively, constr_ok and elim_ok
guarantee that the transformation correctly transports dependent

constructors and dependent eliminators, as doing so will preserve
equality up to transport for those subterms. This makes it possible for
the transformation to avoid applying f and g, instead porting terms
from A directly to B.

equality To ensure coherence with equality (Figure 29, bottom),
Eta and Iota must prove η and ι. That is, Eta must have the same
definitional behavior as the dependent eliminator (elim_eta), and must
behave like identity (eta_ok). Each Iota must prove and rewrite along
the simplification (refolding [25]) behavior that corresponds to a case

4 Some differences in the type theory make this not quite perfect.

4.3 differencing 77

(* -------------------- Equivalence -------------------- *)

section: Π (a : A) . g (f a) = a.
retraction: Π (b : B), f (g b) = b.

constr_ok:
∀ j ~xA ~xB,

~xA ≡A'B ~xB →
DepConstr(j, A) ~xA ≡A'B DepConstr(j, B) ~xB.

elim_ok:
∀ a b PA PB ~fA ~fB,
a ≡A'B b →
PA ≡(A→s)'(B→s) PB →
(∀ j, ~fA[j] ≡ξ(A,PA ,j)'ξ(B,PB ,j)

~fB[j]) →
DepElim(a, PA) ~fA ≡(Pa)'(Pb) DepElim(b, PB) ~fA.

(* ---------------------- Equality ---------------------- *)

elim_eta(A): Π a P ~f, DepElim(a, P) ~f : P (Eta(A) a).
eta_ok(A): Π (a : A), Eta(A) a = a.

iota_ok(A):
∀ j P ~f ~x (Q: P(Eta(A) (DepConstr(j, A) ~x)) → s),
Iota(A, j, Q) :
Q (DepElim(DepConstr(j, A) ~x, P) ~f) →
Q (rew ← eta_ok(A) (DepConstr(j, A) ~x) in
(~f[j]. . .(DepElim(IH0, P) ~f). . .(DepElim(IHn, P) ~f). . .)).

Figure 29: Correctness criteria for a configuration to ensure that the
transformation preserves equivalence (top) coherently with
equality (bottom, shown for A; B is similar). f and g are
defined in text. s, ~f , ~x, and ~IH represent sorts, eliminator
cases, constructor arguments, and inductive hypotheses.
ξ (A, P, j) is the type of DepElim(A, P) at DepConstr(j, A)
(similarly for B). rew is shorthand for applying the equality
eliminator.

78 proof repair across type equivalences

of the dependent eliminator (iota_ok). This makes it possible for the
transformation to avoid applying section and retraction.

correctness With these correctness criteria for a configuration,
we get the completeness result (proven in Coq 8) that every equiv-
alence induces a configuration. We also obtain an algorithm for the
soundness result that every configuration induces an equivalence.
Both of these are what we would expect from Lambek’s theorem,
which states that the initial algebra and the equivalence are isomor-
phic to one another.

The algorithm to prove section is as follows (retraction is similar):
replace a with Eta(A)a by eta_ok(A). Then, induct using DepElim
over A. For each case j, the proof obligation is to show that g (
f a) is equal to a, where a is DepConstr(A, j) applied to the non-
inductive arguments (by elim_eta(A)). Expand the right-hand side
using Iota(A, j), then expand it again using Iota(B, j) (destructing
over each eta_ok to apply the corresponding Iota). The result follows
by definition of g and f, and by reflexivity.

equivalences from configurations The algorithm above is
essentially what differencing uses for each search procedure to gen-
erate functions f and g for the automatic configurations 9 , and also
generate proofs section and retraction that these functions form an
equivalence 10 . To minimize dependencies, Pumpkin Pi does not
produce proofs of constr_ok and elim_ok directly, as stating these
theorems cleanly would require either a special framework [150] or a
univalent type theory [154]. If the proof engineer wishes, it is possible
to prove these in individual cases 8 , but this is not necessary in order
to use Pumpkin Pi.

4.3.4 Search Procedures

Pumpkin Pi implements four search procedures for automatic config-
uration 6 :

1. algebraic ornaments,

2. unpacking Σ types,

3. swapping constructors, and

4. moving between nested pairs and records.

As a courtesy to the reader, in this section, I detail just the first search
procedure as an example. In Section 4.5, I will briefly describe the
other search procedures, as well as what is needed to extend Pumpkin

Pi with new search procedures. I will also explain how the search
procedures are implemented.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/arbitrary.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/search/search.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/search/equivalence.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/arbitrary.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftconfig.ml

4.3 differencing 79

algebraic ornaments The first search procedure discovers equiv-
alences that correspond to algebraic ornaments. An algebraic ornament
relates an inductive type to an indexed version of that type, where
the new index is fully determined by a fold over A (I call this fold the
indexer). For example, vector is exactly list with a new index of type
nat, where the new index is fully determined by the length function
(recall Figure 25 on page 67). The equivalence that we already saw in
Section 4.2.2 follows from this:

Σ(l : list T).length l = n ' vector T n

Alternatively, a list is equivalent to a vector of some length:

list T ' Σ(n : nat).vector T n

As usual, this equivalence is made up of two functions f and g, along
with proofs section and retraction. In addition, for algebraic orna-
ments, there is a proof of this theorem:

Π (l : list T), length l = πl (f l)

which states that the length function is coherent with this equivalence.
In Section 4.6, I will show you a case study moving from lists to

length-indexed vectors. Nominally this works by porting functions
and proofs along the equivalence from Section 4.2.2, but in practice this
works by chaining two automatic configurations with some human
input. The first configuration uses a search procedure that discovers
the equivalence between lists and vectors of some length above, as well
as the proof of coherence. The second configuration uses a search pro-
cedure that discovers how to unpack vectors of some length to vectors
of a particular length. The first configuration nicely demonstrates how
differencing works, so let us look at it in detail.

differencing for algebraic ornaments Assume inductive
types A and AI , related by an algebraic ornament with the index of
type I. In the scope of this thesis, further assume that A and I are not
indexed (dependent) types.5 Then there is a type equivalence:

A ' Σ(i : I).AI i

In addition, there is an indexer, which is a unique fold:

indexer : A → I.

that projects the lifted index:

coherence : Π (a : A), indexer a = πl (f a).

5 The original paper that this is from lets all of A, AI , and I be indexed inductive types,
with the new index of type I appearing anywhere within the list of indices of AI ;
the implementation makes the same decision. I felt that this was very important to
show in detail when I wrote that paper, since indices are often omitted, even though
handling them is one of the trickiest parts of implementing an algorithm like this. In
this thesis, however, I decided to simplify the presentation and assume the types are
not indexed, and so the new index is the only index of AI . I do recommend checking
out the original paper if you would really like to implement something like this over
indexed types—it is formalized for those who are sufficiently fanatical.

80 proof repair across type equivalences

A := Ind(TyA : sA){CA1 , . . . , CAn}
AI := Ind(TyAI

: (Π(i : I).sAI)){CAI1
, . . . , CAIn

}
B := Σ(i : I).AI i

PA := Π(a : A).sA
PAI := Π(i : I)(ai : AI i).sAI

∀1 ≤ j ≤ n,
EAj (pA : PA) := ξ(A, pA, j)
EBj (pAI : PAI) := ξ(AI , pAI , j)

Figure 30: Common definitions. Here, ξ (A, pA, j) is the type of
Elim(A, pA) at Constr(j, A) (similarly for AI).

Following existing work, I call this equivalence the ornamental promo-
tion isomorphism [91]; when it holds and a coherent indexer exists, I
say that AI is an algebraic ornament of A.

In their original form, ornaments are a programming mechanism:
given a type A, an ornament determines some new type AI . Differ-
encing inverts this process for algebraic ornaments: given types A
and AI , it searches for the configuration that induces the ornamental
promotion isomorphism between them. This is possible for algebraic
ornaments precisely because the indexer is extensionally unique. For
example, all possible indexers for list and vector must compute the
length of a list; if we were to try doubling the length instead, we
would not be able to satisfy the equivalence, since no lists would map
to the vectors of odd lengths.

common definitions The algorithm assumes a function new that
determines whether a hypothesis in a case of the eliminator type of
AI is new. Figure 30 contains other common definitions, the names for
which are reserved: Input type A expands to an inductive type with
constructors {CA1 , . . . , CAn}. PA denotes the type of the motive of the
eliminator of A, and each EAj denotes the type of the eliminator for
the jth constructor of A. Analogous names are also reserved for input
type AI . The type B is AI at some index of type I.

For historical reasons, differencing generates the equivalence first,
then derives the configuration, rather than the other way around. It
builds on three intermediate steps: one to generate each of indexer, f,
and g. It then uses that to build the configuration. Figure 31 shows the
algorithm for generating indexer. The algorithms for generating f and
g are similar; Figure 32 shows only the derivations for generating f that
are different from those for generating indexer, and the derivations
for generating g are omitted.

4.3 differencing 81

Γ ` (TA, TAI) ⇓im t
Index-Motive

Γ ` (A, AI) ⇓im λ(a : A).I

Γ ` (TA, TAI) ⇓ic t

Index-Conclusion

Γ ` (pA a, pAI i ai) ⇓ic i

Index-Hypothesis

new nAI bAI
Γ, nAI : tAI ` (Π(nA : tA).bA, bAI) ⇓ic t

Γ ` (Π(nA : tA).bA, Π(nAI : tAI).bAI) ⇓ic t

Index-IH
Γ ` (A, AI) ⇓im p Γ, nA : p a ` (bA, bAI [nA/i]) ⇓ic t

Γ ` (Π(nA : pA a).bA, Π(nAI : pAI i b).bAI) ⇓ic λ(nA : p a).t

Index-Prod

Γ, nA : tA ` (bA, bAI [nA/nAI]) ⇓ic t
Γ ` (Π(nA : tA).bA, Π(nAI : tAI).bAI) ⇓ic λ(nA : tA).t

Γ ` (TA, TAI) ⇓i t
Index-Ind

Γ ` (A, AI) ⇓im p
Γ, pA : PA, pAI : PAI ` {(EA1 pA, EAI1

pAI), . . . , (EAn pA, EAIn
pAI)} ⇓ic

~f

Γ ` (A, AI) ⇓i λ(a : A).Elim(a, p)~f

Figure 31: Differencing for the indexer function.

4.3.4.1 Differencing for the Indexer

Differencing generates the indexer by traversing the types of the elim-
inators for A and AI in parallel using the algorithm from Figure 31,
which consists of three judgments: one to generate the motive, one to
generate each case, and one to compose the motive and cases.

generating the motive The (TA, TAI) ⇓im t judgment consists
of only the derivation Index-Motive, which computes the indexer
motive from the types A and AI (expanded in Figure 30). It does this
by constructing a function from A to I. Consider list and vector:

list T := Ind (TyA : s) { . . . }
vector T := Ind (TyB : Π(n : nat).s) { . . . }

For these types, Index-Motive computes the motive:

Γ ` (list T, vector T) ⇓im λ (l : list T) . nat

which is the motive for the length function.

generating each case The Γ ` (TA, TAI) ⇓ic t judgment gener-
ates each case of the indexer by traversing in parallel the correspond-

82 proof repair across type equivalences

ing cases of the eliminator types for A and AI . It consists of four
derivations: Index-Conclusion handles base cases and conclusions of
inductive cases, while Index-Hypothesis, Index-IH, and Index-Prod

recurse into products.
Index-Hypothesis handles each new hypothesis that corresponds

to a new index in an inductive hypothesis of an inductive case of the
eliminator type for AI . It adds the new index to the environment, then
recurses into the body of only the type for which the index already
exists. For example, in the inductive case of list and vector: new
determines that n is the new hypothesis. Index-Hypothesis then
recurses into the body of only the vector case:

Π (l : list T) (IHl : pA l), pA (cons tl l)
Π (v : vector T n) (IHv : pAI n v), pAI (S n) (cons n tl l)

Index-Prod is next. It recurses into product types when the hypothesis
is neither a new index nor an inductive hypothesis. Here, it runs
twice, recursing into the body and substituting names until it hits the
inductive hypothesis for both types:

Π (IHl : pA l), pA (cons tl l)
Π (IHv : pAI n l), pAI (S n) (cons n tl l)

Index-IH then takes over. It substitutes the new motive in the induc-
tive hypothesis, then recurses into both bodies, substituting the new
inductive hypothesis for the index in the eliminator type for AI . Here,
it substitutes the new motive for pA in the type of IHl, extends the
environment with IHl , then substitutes IHl for n, so that it recurses on
these types:

pA (cons tl l)
pAI (S IHl) (cons IHl tl l)

Finally, Index-Conclusion computes the conclusion by taking the
new index of the application of the motive pAI , here S IHl. In total,
this produces a function:

Γ ` (Π (l : list T) (IHl : pA l), pA (cons tl l),
Π (v : vector T n) (IHv : pAI n v), pAI (S n) (cons n tl l))

⇓ic λ (tl : T) (l : list T) (IHl : (λ (l : list T) . nat) l) . S IHl

that computes the length of cons t l.

composing the result The Γ ` (TA, TAI) ⇓i t judgment consists
of only Index-Ind, which identifies the motive and each case using
the other two judgments, then composes the result. In the case of list
and vector, this produces a function:

Γ ` (list T, vector T)
⇓i λ (l : list T).

Elim(l, λ (l : list T) . nat) {
O,
λ (tl : T) (l : list T) (IHl : (λ (l : list T) . nat) l) . S IHl

}

that computes the length of a list.

4.3 differencing 83

Γ ` (TA, TB) ⇓ fm t
F-Motive

Γ ` (A, AI) ⇓i π

Γ ` (A, AI) ⇓ fm λ(a : A).AI (π ~ia a)

Γ ` (TA, TB) ⇓ fc t

F-Conclusion

Γ ` (pA a, pAI i ai) ⇓ fc ai

F-IH
Γ ` (A, AI) ⇓i π Γ ` (A, AI) ⇓ fm p
Γ, nA : p a ` (bA, bAI [nA/ai][π a/i]) ⇓pc t

Γ ` (Π(nA : pA a).bA, Π(nAI : pAI i ai).bAI)
⇓pc λ(nA : p a).t

Γ ` (TA, TB) ⇓ f t
F-Ind

Γ ` (A, AI) ⇓i π Γ ` (A, AI) ⇓ fm p
Γ, pA : PA, pAI : PAI ` {(EA1 pA, EAI1

pAI), . . . , (EAn pA, EAIn
pAI)} ⇓pc

~f

Γ ` (A, AI) ⇓p λ(a : A).∃ (π a) (Elim(a, p)~f)

Figure 32: Differencing for f.

4.3.4.2 Differencing for the Configuration

As mentioned earlier, for historical reasons, differencing in Pumpkin Pi
discovers the equivalence parts f and g first, then uses those functions
to discover the configuration, rather than the other way around. It also
proves that these functions form an equivalence, and that the indexer
is coherent with the equivalence.

discovering the equivalence parts Figure 32 shows the in-
teresting derivations for the judgment (TA, TB) ⇓ f t that searches for
f: F-Motive identifies the motive as B with a new index (which it
computes using indexer, denoted by metavariable π). When F-IH
recurses, it substitutes the inductive hypothesis for the term rather
than for its index, and it substitutes the new index (which it also
computes using indexer) inside of that term. F-Conclusion returns
the entire term, rather than its index. Finally, F-Ind not only recurses
into each case, but also packs the result into an existential.

The omitted derivations to difference for g are similar, except that
the domain and range are switched. Consequentially, indexer is never
needed; G-Motive removes the index rather than inserting it, and
G-IH no longer substitutes the index. Additionally, G-Hypothesis

adds the hypothesis for the new index rather than skipping it, and
G-Ind eliminates over the projection rather than packing the result.

deriving the configuration DepConstr and DepElim over A
are just the standard constructors and eliminators for A. To derive

84 proof repair across type equivalences

DepConstr over B, differencing takes each constructor of A, applies f to
the conclusion of that constructor, and normalizes the result. It then
ports the hypotheses of the resulting constructor to use B in place of A,
and drops the remaining applications of f and the indexer in the body,
replacing them instead with the projections πr and πl , respectively.

For example, earlier, letting A be lists, AI be vectors, and B be
vectors of some length, I noted that the empty constructor of B packs
the constructor of AI into an existential:
DepConstr(0, B): B := ∃(Constr(0, nat)) (Constr(0, vector T)).

This is the same as applying the function f that Pumpkin Pi derives to
DepConstr(0, A), and then normalizing the result. On the other hand,
the cons constructor over B not just packs the result into an existential,
but also takes B itself as an argument rather than A:
DepConstr(1, B) : T → B → B :=

λ (t : T) (l : B) .
∃ ((Constr (1, nat)) (πl l))
((Constr (1, vector T)) t (πl l) (πr l))).

To derive this, differencing applies f to the conclusion of the construc-
tor of A and normalizes the result:

λ (t : T) (l : A) .
∃ ((Constr (1, nat)) (π l))
((Constr (1, vector T)) t (π l) (f l))).

It then lifts the hypothesis of type list T, and removes remaining
references to the indexer π and to f, replacing them instead with the
projections πl and πr.

Deriving DepElim over B works similarly, except that it lifts not
just the hypotheses of types A, but also the motive and inductive
hypotheses. This produces the dependent eliminator from earlier:
DepElim(s, P) { f0 f1 } : P (∃ (πl s) (πr s)) :=
Elim(πr s, λ(n : nat)(v : vector T n) . P (∃ n v)) {
f0,
(λ (t : T) (n : nat) (v : vector T n) . f1 t (∃ n v))

}.

Differencing discovers Eta and Iota directly. For any algebraic
ornament, Eta is the standard η-expansion for Σ types:
Eta(B) := λ(b : B).∃ (πl b) (πr b).

Each Iota follows by rewriting by reflexivity, since A and AI have the
same inductive structure.

proving correctness In the end, Pumpkin Pi generates proofs
of section and retraction, as well as coherence. This proves the
correctness property that the configuration induces an equivalence,
thereby increasing confidence in the output of differencing. The proof
of coherence follows by reflexivity, thanks to the construction of f
applying the indexer as the left projection. The proofs of section and
retraction follow from the algorithm presented earlier.

4.4 transformation 85

Γ ` t ⇑ t′

Dep-Elim

Γ ` a ⇑ b Γ ` pa ⇑ pb Γ ` ~fa ⇑ ~fb

Γ ` DepElim(a, pa)~fa ⇑ DepElim(b, pb)~fb

Dep-Constr

Γ `~ta ⇑~tb

Γ ` DepConstr(j, A)~ta ⇑ DepConstr(j, B)~tb

Eta

Γ ` Eta(A) ⇑ Eta(B)

Iota

Γ ` qA ⇑ qB Γ ` ~tA ⇑ ~tB

Γ ` Iota(j, A, qA) ~tA ⇑ Iota(j, B, qB) ~tB

Equivalence

Γ ` A ⇑ B

Constr

Γ ` T ⇑ T′ Γ `~t ⇑ ~t′

Γ ` Constr(j, T)~t ⇑ Constr(j, T′) ~t′

Ind

Γ ` T ⇑ T′ Γ ` ~C ⇑ ~C′

Γ ` Ind(Ty : T)~C ⇑ Ind(Ty : T′)~C′

App

Γ ` f ⇑ f ′ Γ ` t ⇑ t′

Γ ` f t ⇑ f ′t′

Elim

Γ ` c ⇑ c′ Γ ` Q ⇑ Q′ Γ ` ~f ⇑ ~f ′

Γ ` Elim(c, Q)~f ⇑ Elim(c′, Q′)~f ′

Lam

Γ ` t ⇑ t′ Γ ` T ⇑ T′ Γ, t : T ` b ⇑ b′

Γ ` λ(t : T).b ⇑ λ(t′ : T′).b′

Prod

Γ ` t ⇑ t′ Γ ` T ⇑ T′ Γ, t : T ` b ⇑ b′

Γ ` Π(t : T).b ⇑ Π(t′ : T′).b′

Var

v ∈ Vars

Γ ` v ⇑ v

Figure 33: Transformation for transporting terms across A ' B with
configuration ((DepConstr, DepElim), (Eta, Iota)).

4.4 transformation

At the heart of Pumpkin Pi is a configurable proof term transfor-
mation that automatically transports proofs across equivalences 4 .
Figure 33 shows this proof term transformation. The transformation
Γ ` t ⇑ t′ takes some term t defined over the old version of a type to
a new term t′ defined over the new version of the type. It is parame-
terized over equivalent types A and B (Equivalence) as well as the
configuration for that equivalence. It assumes η-expanded functions.
It implicitly constructs an updated context Γ′ in which to interpret t′,
but this is not needed for computation.

The proof term transformation is (perhaps deceptively) simple by
design: it moves the bulk of the work into the configuration, and
represents the configuration explicitly. This configuration either comes
from automatic configuration (like the search procedure in the previ-

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/lift.ml

86 proof repair across type equivalences

(* 1: original *)
λ (T: Type) (l m: Old.list T) .
Elim(l, λ(l: Old.list T).Old.list T → Old.list T)) {
(λ m . m),
(λ t _ IHl m . Constr(1, Old.list T) t (IHl m))

} m.

(* 2: unified *)
λ (T: Type) (l m: A) .
DepElim(l, λ(l: A).A → A)) {
(λ m . m)
(λ t _ IHl m . DepConstr(1, A) t (IHl m))

} m.

(* 3: transformed *)
λ (T: Type) (l m: B) .
DepElim(l, λ(l: B).B → B)) {
(λ m . m)
(λ t _ IHl m . DepConstr(1, B) t (IHl m))

} m.

(* 4: reduced *)
λ (T: Type) (l m: New.list T) .
Elim(l, λ(l: New.list T).New.list T → New.list T)) {
(λ t _ IHl m . Constr(0, New.list T) t (IHl m)),
(λ m . m)

} m.

Figure 34: Swapping cases of the append function, from top to bottom,
the input term: 1) unmodified, 2) unified with the config-
uration, 3) ported to the new version of the type, and 4)
reduced to the output.

4.4 transformation 87

ous section), or directly from the proof engineer. Of course, in both of
these cases, typical proof terms in Coq do not apply these configura-
tion terms explicitly. Pumpkin Pi does some additional work using
unification heuristics to get real proof terms into this format before
running the transformation (Section 4.4.1). It then runs the proof term
transformation, which transports proofs across the equivalence that
corresponds to the configuration, replacing A with B (Section 4.4.2).

4.4.1 Unification Heuristics

The transformation does not fully describe the search procedure for
transforming terms that Pumpkin Pi implements. Before running the
transformation, Pumpkin Pi unifies subterms with particular A (fixing
parameters and indices), and with applications of configuration terms
over A. The transformation then transforms configuration terms over
A to configuration terms over B. Reducing the result produces the
output term defined over B.

Figure 34 shows this with the list append function ++ from Sec-
tion 4.1. To update ++ (top), Pumpkin Pi unifies Old.list T with A,
and Constr and Elim with DepConstr and DepElim (second from the
top). After unification, the transformation recursively substitutes B
for A, which moves DepConstr and DepElim to construct and eliminate
over the updated type (second from the bottom). This reduces to a
term with swapped constructors and cases over New.list T (bottom).

In this case, unification is straightforward. This can be more chal-
lenging when configuration terms are dependent. This is especially
pronounced with definitional Eta and Iota, which typically are im-
plicit (reduced) in real code. To handle this, Pumpkin Pi implements
custom unification heuristics for each search procedure that unify sub-
terms with applications of configuration terms, and that instantiate
parameters and dependent indices in those subterms 6 . The trans-
formation in turn assumes that all existing parameters and indices are
determined and instantiated by the time it runs.

Pumpkin Pi falls back to Coq’s unification for manual configuration
and when these custom heuristics fail. When even Coq’s unification is
not enough, Pumpkin Pi relies on proof engineers to provide hints in
the form of annotations 5 .

The unification heuristics largely move the burden of undecidability
outside of the details of the proof term transformation. Most notably,
since unification heuristics are abstracted from the transformation
itself, this makes it relatively simple to hook in a human-assisted
workflow using annotations. Still, the Pumpkin Pi transformation
does struggle sometimes with termination. I describe this more in
Section 4.5.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftconfig.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v

88 proof repair across type equivalences

4.4.2 Specifying a Correct Transformation

The implementation of this transformation in Pumpkin Pi produces
a term that Coq type checks, and so does not add to the TCB. As
Pumpkin Pi is an engineering tool, there is no need to formally prove
the transformation correct, though doing so would be satisfying. The
goal of such a proof would be to show that if Γ ` t ⇑ t′, then t and t′

are equal up to transport, and t′ refers to B in place of A. The key steps
in this transformation that make this possible are porting terms along
the configuration (Dep-Constr, Dep-Elim, Eta, and Iota). The rest is
straightforward. For metatheoretical reasons, without additional ax-
ioms, a proof of this theorem in Coq can only be approximated [150]. It
would be possible to generate per-transformation proofs of correctness,
but this does not serve an engineering need.

4.5 implementation

Like the PumpkinPumpkinPumpkin prototype, Pumpkin PiPumpkin PiPumpkin Pi is also included in the
Pumpkin PatchPumpkin PatchPumpkin Patch plugin suite by default. As with Pumpkin, the latest
version supports Coq 8.8, with Coq 8.9.1 support in a branch. This
section describes the implementation of the core functionality of the
Pumpkin Pi plugin (Section 4.5.1), along with important features for
workflow integration (Section 4.5.2). The interested reader can follow
along in the repository.

4.5.1 Tool Details

The implementation (Section 4.5.1.1) of the Repair command looks up
the configuration for the types, invoking a search procedure for auto-
matic configuration if relevant. The configuration, whether obtained
manually or automatically, is cached for future calls to Repair. The
implementations of the differencing search procedures for automatic
configuration (Section 4.5.1.2) have freedom over the details of how
they are implemented, as long as they return configurations in the end.
The transformation (Section 4.5.1.3) operates directly over proof terms
in Gallina, with the cached configuration also defined as proof terms
in Gallina. As with Pumpkin, the Pumpkin Pi extension to Pumpkin

Patch does not extend the TCB in any way (Section 4.5.1.4).

4.5.1.1 The Command

The implementation of Pumpkin Pi exposes the repair workflow to
proof engineers through the Repair command. This invokes the work-
flow from Figure 22 on page 65. When the proof engineer invokes the
command:

Repair A B in old_proof as new_proof.

4.5 implementation 89

The first step—Configure—looks up A and B in a cache of configura-
tions. If it finds one, it uses that; otherwise, it runs the differencing
search procedures for automatic configuration. If that fails, it prompts
the proof engineer to supply a configuration manually. Proof engi-
neers can supply manual configurations by defining them as Gallina
terms and providing them to the Configure Repair command.

Once Pumpkin Pi has found a configuration, the second step—
Transform—runs the transformation. It transforms old_proof into
some new proof term, then defines the new proof term as new_proof.
It is also possible to ask Pumpkin Pi to automatically generate a name.
The final step—Decompile—runs in the end to suggest a proof script.

There are a few other useful commands in Pumpkin Pi that are
detailed in the repository. Notably, the Repair Module command uses
higher-order functions written by Nate to operate over entire modules
at once and define new, repaired versions of those modules. The
Preprocess command converts functions to use eliminators, so that
the transformation can assume primitive eliminators. The commands
Lift and Lift Module skip the decompilation step, when only the
term is desired in the end. Several options make it possible to control
whether Pumpkin Pi generates correctness proofs, as well as how
aggressively it runs optimizations. The repository includes more
information on all of these.

4.5.1.2 Differencing

As mentioned in Section 4.3.4, differencing inside of Pumpkin Pi
implements four search procedures for automatic configuration 6 :

1. algebraic ornaments,

2. unpacking Σ types,

3. swapping constructors, and

4. moving between nested pairs and records.

I already detailed the first of these in Section 4.3.4. The second is often
used in combination with the first, to get from equivalences like:

A ' Σ(i : I).AI i

to equivalences like:

Σ(a : A).π a = i ' AI i

where π is the indexer. The first two configurations are used in
combination, for example, to repair proofs in response to the change
from lists to vectors of a particular length in Figure 25, as long as the
proof engineer proves the missing length invariant. This differencing
algorithm is implemented by simply instantiating the types A and B
of a generic configuration that can be defined inside of Coq directly.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftconfig.ml

90 proof repair across type equivalences

The third configuration—invoked in the example in Section 4.1—
constructs a swap map that maps the constructors of A to the swapped
constructors of B, then otherwise runs an algorithm much like the
algorithm for algebraic ornaments. When there are multiple possible
swap maps, it returns an ordered list of possible mappings to choose
from, and prompts the proof engineer to select one. It also lets the
proof engineer supply the swap map directly, and from that can derive
the configuration, the equivalence, and the proof. The fourth search
procedure is similar to the search procedure for algebraic ornaments,
but with some additional logic to handle nested tuples.

All search procedures have the historical detail of defining the equiv-
alence first, then deriving the configuration from it, rather than the
other way around. For simplicity, the search procedures currently
implemented inside of Pumpkin Pi also make some syntactic assump-
tions about the input and output types. The details of these restrictions
can be found inside of the repository.

Defining new search procedures comes with a lot of freedom, as
long as the search procedures produce a configuration in the end. I
found it simple to add configuration four in a matter of a few days in
response to a request by an industrial proof engineer, reusing existing
functions defined in other search procedures. I would not expect
the average proof engineer to be able to do the same, and I have
not yet asked anyone else to write a search procedure to gauge the
effort involved for others. It is notable that manual configuration is
always an option when search procedures do not exist, but the results
in Section 4.6 suggest that automatic configuration is very helpful
for saving work for proof engineers, and so worth implementing for
useful classes of equivalences.

4.5.1.3 Transformation

The implementation 4 of the transformation from Section 4.4 oper-
ates over terms in Gallina. It takes as input two types A and B, along
with a configuration that induces an equivalence between them. A
and B may not necessarily be the inputs to differencing—in the case
of algebraic ornaments, for example, differencing takes A and AI as
inputs, but the transformation takes A and B as inputs, where B is
Σ(i : I).AI i.

The unification heuristics run before the transformation 6 , and in
the end return which transformation derivation to run, and with which
arguments 12 . For the most part, the derivations are implemented in
a way that corresponds to the derivations in Figure 33 on page 85, but
with a few differences highlighted below.

from cicω to gallina The implementation 4 of the transfor-
mation handles language differences to scale from CICω to Gallina.
For example, recall that the transformation assumes primitive elimi-

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/lift.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftconfig.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftrules.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/lift.ml

4.5 implementation 91

nators, while Gallina implements eliminators using pattern matching
and fixpoints. To handle terms that use these features, Nate imple-
mented a Preprocess command in Pumpkin Pi that translates these
terms into corresponding eliminator applications. This command
can preprocess a definition (like length from Figure 7 on page 17) or
an entire module (like List, as shown in ListToVect.v) for lifting. It
currently supports fixpoints that are structurally recursive on only
immediate substructures.6 To translate such a fixpoint, it first extracts
a motive, then generates each case by partially reducing the function’s
body under a hypothetical context for the constructor arguments. The
implementation documents this and other language differences.

optimizations The implementation of the transformation includes
a number of cases that correspond to optimizations not found in the
original transformation. For example, the transformation assumes that
all terms are fully η-expanded. Sometimes, however, η-expansion is
not necessary. For efficiency, rather than fully η-expand ahead of time,
Pumpkin Pi η-expands lazily, only when it is necessary for correctness.
The LazyEta optimization implements this optimization. The code
denotes all optimizations explicitly 4 and explains them in detail
in comments 12 . Section 4.5.2.2 describes some other optimizations
included for the sake of integration with proof engineering workflows.

termination When a subterm unifies with a configuration term,
this suggests that Pumpkin Pi can transform the subterm, but it does
not necessarily mean that it should. In some cases, doing so would
result in nontermination. For example, if B is a refinement of A, then
the transformation can always run Equivalence over and over again,
forever. Pumpkin Pi thus includes some simple termination checks in
the code 12 .

intent Even when termination is guaranteed, whether to transform
a subterm depends on the proof engineer’s intent. That is, Pumpkin

Pi automates the case of porting every A to B, but proof engineers
sometimes wish to port only some As to Bs. Pumpkin Pi has some
support for this using an interactive workflow 13 , with plans for
automatic support in the future.

4.5.1.4 Trusted Computing Base

As with Pumpkin, Pumpkin Pi is implemented as a Coq plugin, and
produces terms that Coq type checks in the end. Pumpkin Pi does not

6 This is enough to preprocess many practical terms, including the entire List module.
But it is not as general as it could be [64, 34]. A more general translation may help
Pumpkin Pi support more terms, and discussions with Coq developers a couple of
years ago suggested that the implementation of such a translation building on work
from the equations [147] plugin was in progress. I do not know the current status.

http://github.com/uwplse/ornamental-search/blob/itp+equiv/plugin/coq/examples/ListToVect.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/lift.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftrules.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/lift/liftrules.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/minimal_records.v

92 proof repair across type equivalences

modify the type checker, and furthermore does not add any axioms,
so it does not increase the TCB. This is perhaps even more notable
for Pumpkin Pi, since all other implementations of transport across
equivalences that I am aware of at least sometimes add axioms. Since
Pumpkin Pi implements transport as a proof term transformation, it is
able to circumvent this and not increase the TCB in any way.

4.5.2 Workflow Integration

So far, I have described the core functionality of Pumpkin Pi. But
Pumpkin Pi has many additional features for the sake of integration
with typical proof engineering workflows. Most notable of these is
the decompiler from Gallina to Ltac (Section 4.5.2.1), which helps
Pumpkin Pi produce a suggested proof script that the proof engineer
can maintain in the end. This and other features help Pumpkin Pi
reach real proof engineers (Section 4.5.2.2).

4.5.2.1 Decompiling to Tactics

Transform produces a proof term, while the proof engineer typically
writes and maintains proof scripts made up of tactics. Pumpkin Pi
improves usability thanks to the realization that, since Coq’s proof
term language Gallina is very structured, it is possible to decompile
these Gallina terms to suggested Ltac proof scripts for the proof
engineer to maintain.

Decompile implements a prototype of this translation 11 : it trans-
lates a proof term to a suggested proof script that attempts to prove
the same theorem the same way. Note that this problem is not well
defined: while there is always a proof script that works (applying
the proof term with the apply tactic), the result is often qualitatively
unreadable. This is the baseline behavior to which the decompiler
defaults. The goal of the decompiler is to improve on that baseline as
much as possible, or else suggest a proof script that is close enough to
correct that the proof engineer can manually massage it into something
that works and is maintainable.

Decompile achieves this in two passes: The first pass decompiles
proof terms to proof scripts that use a predefined set of tactics. The
second pass improves on suggested tactics by simplifying arguments,
substituting tacticals, and using hints like custom tactics and decision
procedures.

first pass: basic proof scripts The first pass takes Gallina
terms and produces tactics in Ltac. Ltac can be confusing to reason
about, since Ltac tactics can refer to Gallina terms, and the semantics
of Ltac depends both on the semantics of Gallina and on the imple-
mentation of proof search procedures written in OCaml. To give a
sense of how the first pass works without the clutter of these details,

https://github.com/uwplse/coq-plugin-lib/tree/9ef05815c261de9c99b604c6b581ba1c4fbc1a46/src/coq/decompiler/decompiler.ml

4.5 implementation 93

〈v〉 ∈ Vars, 〈t〉 ∈ CICω

〈p〉 ::= intro 〈v〉
| rewrite 〈t〉 〈t〉
| symmetry
| apply 〈t〉
| induction 〈t〉 〈t〉 { 〈p〉, . . . , 〈p〉 }
| split { 〈p〉, 〈p〉 }
| left
| right
| 〈p〉 . 〈p〉

Figure 35: Qtac syntax.

I start by defining a mini decompiler that implements a simplified
version of the first pass. I then explain how RanDair scaled this to the
implementation.

The mini decompiler takes CICω terms and produces tactics in a
mini version of Ltac which I call Qtac. The syntax for Qtac is in
Figure 35. Qtac includes hypothesis introduction (intro), rewriting
(rewrite), symmetry of equality (symmetry), application of a term to
prove the goal (apply), induction (induction), case splitting of con-
junctions (split), constructors of disjunctions (left and right), and
composition (.). Unlike in Ltac, induction and rewrite take a motive
explicitly (rather than relying on unification), and apply creates a new
subgoal for each function argument.

The semantics for the mini decompiler Γ ` t ⇒ p are in Figure 36

(assuming =, eq_sym, ∧, and ∨ are defined as in Coq). As with the
real decompiler, the mini decompiler defaults to the proof script that
applies the entire proof term with apply (Base). Otherwise, it improves
on that behavior by recursing over the proof term and constructing a
proof script using a predefined set of tactics.

For the mini decompiler, this is straightforward: Lambda terms be-
come introduction (Intro). Applications of eq_sym become symmetry
of equality (Symmetry). Constructors of conjunction and disjunction
map to the respective tactics (Split, Left, and Right). Applications of
equality eliminators compose symmetry (to orient the rewrite direc-
tion) with rewrites (Rewrite), and all other applications of eliminators
become induction (Induction). The remaining applications become
apply tactics (Apply). In all cases, the decompiler recurses, breaking
into cases, until only the Base case holds.

While the mini decompiler is very simple, only a few small changes
were needed for RanDair to move this to Coq. The generated proof
term of rev_app_distr from Section 4.1, for example, consists only of
induction, rewriting, simplification, and reflexivity (solved by auto).
Figure 37 shows the proof term for the base case of rev_app_distr
alongside the proof script that Pumpkin Pi suggests. This script is
fairly low-level and close to the proof term, but it is already something

94 proof repair across type equivalences

Γ ` t ⇒ p
Intro

Γ, n : T ` b⇒ p
Γ ` λ(n : T).b⇒ intro n. p

Symmetry

Γ ` H ⇒ p
Γ ` eq_sym H ⇒ symmetry. p

Split

Γ ` l ⇒ p Γ ` r ⇒ q
Γ ` Constr(0, ∧) l r ⇒ split{p, q}.

Left

Γ ` H ⇒ p
Γ ` Constr(0, ∨) H ⇒ left. p

Right

Γ ` H ⇒ p
Γ ` Constr(1, ∨) H ⇒ right. p

Rewrite

Γ ` H1 : x = y Γ ` H2 ⇒ p
Γ ` Elim(H1, P){x, H2, y} ⇒ symmetry. rewrite P H1. p

Induction

Γ ` ~f ⇒ ~p

Γ ` Elim(t, P) ~f ⇒ induction P t ~p

Apply

Γ ` t⇒ p
Γ ` f t⇒ apply f . p

Base

Γ ` t⇒ apply t

Figure 36: Qtac decompiler semantics.

4.5 implementation 95

fun (y0 : list A)1 =>
list_rect2 _ _ (fun a l H2 =>
eq_ind_r3 _ eq_refl4 (app_nil_r (rev l) (a::[]))3)
eq_refl5
y02

- intro y0.1 induction y0 as [a l H|].2
+ simpl. rewrite app_nil_r.3 auto.4
+ auto.5

Figure 37: Proof term (top) and decompiled proof script (bottom) for
the base case of rev_app_distr (Section 4.1), with corre-
sponding terms and tactics grouped by color & number.

that the proof engineer can step through to understand, modify, and
maintain. There are few differences from the mini decompiler needed
to produce this, for example handling of rewrites in both directions
(eq_ind_r as opposed to eq_ind), simplifying rewrites, and turning
applications of eq_refl into reflexivity or auto.

second pass: better proof scripts The implementation of
Decompile first runs something like the mini decompiler, then modi-
fies the suggested tactics to produce a more natural proof script 11 .
For example, it cancels out sequences of intros and revert, inserts
semicolons, and removes extra arguments to apply and rewrite. It
can also take tactics from the proof engineer (like part of the old
proof script) as hints, then iteratively replace tactics with those hints,
checking for correctness. This makes it possible for suggested scripts
to include custom tactics and decision procedures.

from qtac to ltac The mini decompiler assumes more pre-
dictable versions of rewrite and induction than those in Coq. De-
compile includes additional logic to reason about these tactics 11 . For
example, Qtac assumes that there is only one rewrite direction. Ltac
has two rewrite directions, and so the decompiler infers the direction
from the motive.

Qtac also assumes that both tactics take the motive explicitly, while
in Coq, both tactics infer the motive automatically. Consequentially,
Coq sometimes fails to infer the correct motive. To handle induction,
the decompiler strategically uses revert to manipulate the goal so that
Coq can better infer the motive. To handle rewrites, it uses simpl to
simplify the goal before rewriting. Neither of these approaches is guar-
anteed to work, so the proof engineer may sometimes need to tweak
the suggested proof script appropriately. Even if RanDair passes
Coq’s induction principle an explicit motive, Coq still sometimes fails
due to unrepresented assumptions. Long term, using another tactic
like change or refine before applying these tactics may help with cases
for which Coq cannot infer the correct motive.

https://github.com/uwplse/coq-plugin-lib/tree/9ef05815c261de9c99b604c6b581ba1c4fbc1a46/src/coq/decompiler/decompiler.ml
https://github.com/uwplse/coq-plugin-lib/blob/9ef05815c261de9c99b604c6b581ba1c4fbc1a46/src/coq/decompiler/decompiler.ml

96 proof repair across type equivalences

from cicω to gallina Scaling the decompiler to Gallina intro-
duces let bindings, which are generated by tactics like rewrite in,
apply in, and pose. Decompile implements 11 support for the tactics
rewrite in and apply in similarly to how it supports rewrite and
apply, except that it ensures that the unmanipulated hypothesis does
not occur in the body of the let expression, it swaps the direction of
the rewrite, and it recurses into any generated subgoals. In all other
cases, it uses pose, a catch-all for let bindings.

forfeiting soundness While there is a way to always produce
a correct proof script, by default, Decompile deliberately forfeits
soundness to suggest more useful tactics. For example, it may suggest
induction, but leave motive inference to the proof engineer. I have
found these suggested tactics easier to work with (Section 4.6). In the
case the suggested proof script is not quite correct, it is still possible to
use the generated proof term directly. RanDair has also implemented
a simplified sound version of the decompiler in a branch.

pretty printing After decompiling proof terms, the implementa-
tion of Decompile pretty prints the result 11 . Like the mini decom-
piler, Decompile represents its output using a predefined grammar of
Ltac tactics, albeit one that is larger than Qtac, and that also includes
tacticals. It maintains the recursive proof structure for formatting.
Pumpkin Pi keeps all output terms from Transform in the Coq en-
vironment in case the decompiler does not succeed. Once the proof
engineer has the new proof, she can remove the old one.

4.5.2.2 Reaching Real Proof Engineers

The goal of workflow integration is to reach real proof engineers. Many
of my design decisions in implementing Pumpkin Pi were informed
by my partnership with an industrial proof engineer (Section 4.6). For
example, the proof engineer rarely had the patience to wait more than
ten seconds for Pumpkin Pi to port a term, so I implemented optional
aggressive caching, even caching intermediate subterms encountered
while running the transformation 14 . I also added a cache to tell
Pumpkin Pi not to δ-reduce certain terms 14 . With these caches, the
proof engineer found Pumpkin Pi efficient enough to use on a code
base with tens of thousands of lines of code and proof.

The experiences of proof engineers also inspired new features. For
example, I implemented a search procedure to generate custom elimi-
nators to help reason about types like Σ(l : list T).length l = n by
reasoning separately about the projections 15 . I added informative
error messages 22 to help the proof engineer distinguish between user
errors and bugs. Nate implemented machinery for whole module
processing to handle entire libraries at once. These features helped
with workflow integration.

https://github.com/uwplse/coq-plugin-lib/blob/9ef05815c261de9c99b604c6b581ba1c4fbc1a46/src/coq/decompiler/decompiler.ml
https://github.com/uwplse/coq-plugin-lib/blob/9ef05815c261de9c99b604c6b581ba1c4fbc1a46/src/coq/decompiler/decompiler.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/cache/caching.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/cache/caching.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/automation/search/smartelim.ml
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/src/lib/ornerrors.ml

4.6 results 97

Class Conf. Examples Sav. Repair Search
Alg. Ornaments ♥♥♥ List to Vec., hs-to-coq 3 Pi, UP Pi

List to Vec., Std. Lib. 16 Pi, UP Pi
Unpack Sigma ♥♥♥ Vec., hs-to-coq 3 Pi, UP Pi
Tuples & Records ♥♥♥ Simple Records 13 Pi, UP Pi

Param. Records 17 Pi, UP Pi

Industrial Use 18 Pi, UP Pi
Perm. Constructors ♥♥♥ List, Std. Lib. 1 Pi, UP Pi

Modify PL, REPLicaREPLicaREPLica 1 Pi, UP Pi
Large Ambig. Enum 1 Pi, UP Pi

Add Constructors ♥♥ Extend PL, REPLicaREPLicaREPLica 19 Pi Pi (part)
Factor Constructors ♥ Reviewer 2 Pi, UP None
Perm. Hypotheses ♥ Anders 20 Pi, UP None
Change Structure ♥ Unary to Bin., MB 5 Pi, MB None

Vec. to Fin., Anders 21 Pi None

Table 1: Some changes using Pumpkin Pi (left to right): class of
changes, kind of configuration (♥♥♥ if automatic, ♥♥ if
mixed automatic and manual, and ♥ if manual), examples,
whether using Pumpkin Pi saved development time relative to
reference manual repairs (if yes, if comparable, if no),
and Coq tools I know of that support repair along (Repair)
or automatic proof of (Search) the equivalence corresponding
to each example. Besides Pumpkin Pi (Pi), tools considered
are the Univalent Parametricity (UP) white-box transforma-
tion [151] and the tool from Magaud & Bertot 2000 [105]
(MB). Pumpkin Pi is the only one that suggests tactics. More
nuanced comparisons to these and more are in Chapter 5.

4.6 results

Pumpkin Pi is flexible and useful. It can help and in fact has helped
proof engineers save work on a variety of real proof repair scenar-
ios (Section 4.6.1). In addition, the approach taken has measurable
benefits in terms of both work savings and performance relative to a
comparable tool for the class of changes on which Nate and I have
done an extended evaluation (Section 4.6.2).

4.6.1 Pumpkin Pi Eight Ways

This section summarizes eight case studies using Pumpkin Pi, corre-
sponding to the eight rows in Table 1. These case studies highlight
Pumpkin Pi’s flexibility in handling diverse scenarios, the success of
automatic configuration for better workflow integration, the prelim-
inary success of the prototype decompiler, and clear paths to better
serving proof engineers. Detailed walkthroughs are in the code.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/ListToVect.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/minimal_records.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/more_records.v
https://github.com/Ptival/saw-core-coq/tree/dump-wip
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/add_constr.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/flip.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/fin.v

98 proof repair across type equivalences

algebraic ornaments : lists to packed vectors Pumpkin

Pi implements a search procedure for automatic configuration of al-
gebraic ornaments, detailed in Section 4.3.4. In file 3 , I used this to
port functions and a proof from lists to vectors of some length, since
list T ' Σ(n : nat).vector T n. The decompiler helped me write
proofs in the order of hours that I had found too hard to write by
hand, though the suggested tactics did need massaging.

unpack sigma types: vectors of particular lengths In
the same file 3 , I then ported functions and proofs to vectors of a
particular length, like vector T n. I supported this in Pumpkin Pi by
chaining the previous change with an automatic configuration for
unpacking Σ types. By composition, this transported proofs across the
equivalence from Section 4.2.2.

Two tricks helped with workflow integration for this change: 1)
have the search procedure view vector T n as Σ(v : vector T m).
n = m for some m, then let Pumpkin Pi instantiate those equalities
via unification heuristics, and 2) generate a custom eliminator for
combining list terms with length invariants. The resulting workflow
works not just for lists and vectors, but for any algebraic ornament,
automating otherwise manual effort. The suggested tactics were
helpful for writing proofs in the order of hours that I had struggled
with manually over the course of days, but only after massaging. More
effort is needed to improve tactic suggestions for dependent types.

tuples & records : industrial use An industrial proof engi-
neer at the company Galois has been using Pumpkin Pi in proving
correct an implementation of the TLS handshake protocol. Galois
had been using a custom solver-aided verification language to prove
correct C programs, but had found that at times, the constraint solvers
got stuck. They had built a compiler that translates their language
into Coq’s specification language Gallina, that way proof engineers
could finish stuck proofs interactively using Coq. However, due to
language differences, they had found the generated Gallina programs
and specifications difficult to work with.

The proof engineer used Pumpkin Pi to port the automatically gen-
erated functions and specifications to more human-readable functions
and specifications, wrote Coq proofs about those functions and speci-
fications, then used Pumpkin Pi to port those proofs back to proofs
about the original functions and specifications. So far, they have used
at least three automatic configurations, but they most often used an
automatic configuration for porting compiler-produced anonymous
tuples to named records, as in file 18 . The workflow was a bit nonstan-
dard, so there was little need for tactic suggestions. The proof engineer
reported an initial time investment learning how to use Pumpkin Pi,
followed by later returns.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/examples/Example.v
https://github.com/Ptival/saw-core-coq/tree/dump-wip

4.6 results 99

Inductive Term : Set :=
| Var : Id → Term
| Int : Z → Term
| Eq : Term → Term → Term
| Plus : Term → Term → Term
| Times : Term → Term → Term
| Minus : Term → Term → Term
| Choose : Id → Term → Term.

Inductive Term : Set :=
| Var : Id → Term
| Bool : Id → Term
| Eq : Term → Term → Term
| Int : Z → Term
| Plus : Term → Term → Term
| Times : Term → Term → Term
| Minus : Term → Term → Term
| Choose : Id → Term → Term.

Figure 38: A simple language (left) and the same language with two
swapped constructors and an added constructor (right).

permute constructors : modifying a language The swap-
ping example from Section 4.1 was inspired by benchmarks from the
REPLicaREPLicaREPLica user study of proof engineers. A change from one of the
benchmarks is in Figure 38. The proof engineer had a simple language
represented by an inductive type Term, as well as some definitions
and proofs about the language. The proof engineer swapped two
constructors in the language, and added a new constructor Bool.

This case study and the next case study break this change into two
parts. In the first part, I used Pumpkin Pi with automatic configuration
to repair functions and proofs about the language after swapping the
constructors 1 . With a bit of human guidance to choose the permu-
tation from a list of suggestions, Pumpkin Pi repaired everything,
though the original tactics would have also worked, so there was not
a difference in development time.

add new constructors : extending a language I then used
Pumpkin Pi to repair functions after adding the new constructor in
Figure 38, separating out the proof obligations for the new constructor
from the old terms 19 . This change combined manual and automatic
configuration. I defined an inductive type Diff and (using partial
automation) a configuration to port the terms across the equivalence
Old.Term + Diff ' New.Term. This resulted in case explosion, but was
formulaic, and pointed to a clear path for automation of this class
of changes. The repaired functions guaranteed preservation of the
behavior of the original functions.

Adding constructors was less simple than swapping. For example,
Pumpkin Pi did not yet save us time over the proof engineer from
the user study; fully automating the configuration would have helped
significantly. In addition, the repaired terms were (unlike in the
swap case) inefficient compared to human-written terms. For now,
they make good regression tests for the human-written terms—in the
future, I hope to automate the discovery of the more efficient terms,
or use the refinement framework CoqEAL [36] to get between proofs
of the inefficient and efficient terms.

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/add_constr.v

100 proof repair across type equivalences

factor out constructors : external example The change
from Figure 24 came at the request of an anonymous reviewer. I
supported this using a manual configuration that described which
constructor to map to true and which constructor to map to false 2 .
The configuration was very simple for me to write, and the repaired
tactics were immediately useful. The development time savings were
on the order of minutes for a small proof development. Since most of
the modest development time went into writing the configuration, I
expect time savings would increase for a larger development.

permute hypotheses: external example The change in 20

came at the request of Anders, a cubical type theory expert. It shows
how to use Pumpkin Pi to swap two hypotheses of a type, since T1
→ T2 → T3 ' T2 → T1 → T3. This configuration was manual. Since
neither type was inductive, this change used the generic construction
for any equivalence. This worked well, but necessitated some manual
annotation due to the lack of custom unification heuristics for manual
configuration, and so did not yet save development time, and likely
still would not have had the proof development been larger. Support-
ing custom unification heuristics would improve this workflow.

change inductive structure: unary to binary In 5 , I
used Pumpkin Pi to support a classic example of changing induc-
tive structure: updating unary to binary numbers, as in Figure 27.
Binary numbers allow for a fast addition function, found in the Coq
standard library. In the style of Magaud & Bertot 2000 [105], I used
Pumpkin Pi to derive a slow binary addition function that does not
refer to nat, and to port proofs from unary to slow binary addition. I
then showed that the ported theorems hold over fast binary addition.

The configuration for N used definitions from the Coq standard li-
brary for DepConstr and DepElim that had the desired behavior with no
changes. Iota over the successor case was a rewrite by a lemma from
the standard library that reduced the successor case of the eliminator
that I used for DepElim:

N.peano_rect_succ : ∀ (P : N → Type) pO pS (n : N),
N.peano_rect P pO pS (N.succ n) =
pS n (N.peano_rect P pO pS n).

The need for nontrivial Iota comes from the fact that N and nat have
different inductive structures. By writing a manual configuration with
this Iota, it was possible to instantiate the Pumpkin Pi transformation
to the transformation that had been its own tool.

While porting addition from nat to N was automatic after configuring
Pumpkin Pi, porting proofs about addition took more work. Due to
the lack of unification heuristics for manual configuration, I had to
annotate the proof term to tell Pumpkin Pi that implicit casts in the
inductive cases of proofs were applications of Iota over nat. These

https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/playground/flip.v
https://github.com/uwplse/pumpkin-pi/blob/v2.0.0/plugin/coq/nonorn.v

4.6 results 101

annotations were formulaic, but tricky to write. Unification heuristics
would go a long way toward improving the workflow.

After annotating, I obtained automatically repaired proofs about
slow binary addition, which I found simple to port to fast binary
addition. I hope to automate this last step in the future using CoqEAL.
Repaired tactics were partially useful, but failed to understand custom
eliminators like N.peano_rect, and to generate useful tactics for Iota;
both of these are clear paths to more useful tactics. The development
time for this proof with Pumpkin Pi was comparable to reference man-
ual repairs by external proof engineers. Custom unification heuristics
would help bring returns on investment for experts.

4.6.2 Evaluation: External Transport

Pumpkin Pi implements transport across equivalences externally, in a
way that is suitable for repair. A bonus benefit of external transport
is that, for some classes of changes, the resulting terms are small and
compute efficiently relative to those derived via internal transport. To
evaluate this, Nate and I compared Pumpkin Pi to a tool that approxi-
mates internal transport across equivalences in Coq, using algebraic
ornaments as an example. We used Pumpkin Pi to automatically
discover and transport functions and proofs along the equivalences
corresponding to these ornaments for two scenarios:

1. Single Iteration: from binary trees to sized binary trees

2. Multiple Iterations: from binary trees to binary search trees to
AVL trees

At the time, the decompiler was not yet implemented, so we focused
on proof terms. For comparison, we also used the ornaments that
Pumpkin Pi discovered to transport terms using an internal approx-
imation of transport in Coq from UP [150]. Pumpkin Pi produced
faster functions and smaller terms, especially when composing multi-
ple iterations of repair. In addition, Pumpkin Pi imposed little user
burden, and the equivalences it discovered proved useful to UP.

historical note These days, the authors of UP call the internal
approximation of transport used for comparison in this evaluation the
black-box transformation. After this evaluation and several discussions
with the authors, UP introduced the external implementation of trans-
port used for comparison in the case studies in Table 1, though with-
out support for arbitrary equivalences. At the time of the evaluation,
Pumpkin Pi also did not yet support arbitrary equivalences (though
it now does), but the UP black-box transformation did (and still
does). The development of both the UP white-box transformation and
the generalized Pumpkin Pi transformation happened with frequent

102 proof repair across type equivalences

conversations between the authors of both papers, and doubtlessly
involved mutual influence. It was wonderful, and involved multiple
trips to France. Chapter 5 discusses UP in more detail.

setup The code is in the eval folder of the repository. For each
scenario, Nate ran Pumpkin Pi to search for the ornamental promo-
tion isomorphism, and then transported functions and proofs along
it using both Pumpkin Pi and UP. He noted the amount of user inter-
action (Section 4.6.2.1), and together we measured the performance
of transported terms (Section 4.6.2.2). To test the performance of
transported terms, we tested runtime by taking the median of ten
runs using Time Eval vm_compute with test values in Coq 8.8.0, and we
tested size by normalizing and running coqwc on the result.7

In the first scenario, Nate transported traversal functions along with
proofs that their outputs are permutations of each other from binary
trees (tree) to sized binary trees (Sized.tree). In the second scenario,
he transported the traversal functions to AVL trees (avl) through four
intermediate types (one for each new index), and he lifted a search
function from BSTs (bst) to AVL trees through one intermediate type.
Both scenarios considered only full binary trees.

To fit bst and avl into algebraic ornaments, we used boolean indices
to track invariants. While the resulting types are not the most natural
definitions, this scenario demonstrates that it is possible to express in-
teresting changes to structured types as algebraic ornaments, and that
lifting across these types in Pumpkin Pi produces efficient functions.

4.6.2.1 User Experience

For each intermediate type in each scenario, Nate used Pumpkin Pi
to discover the equivalence. This was enough for Pumpkin Pi to
lift functions and proofs with no additional proof burden and no
additional axioms. To use UP without Pumpkin Pi, he would have had
to prove the equivalence by hand, but instead he was able to use the
equivalence generated by Pumpkin Pi. In addition, to use UP, he had
to prove univalent parametricity of each inductive type; these proofs
were small, but required specialized knowledge. To lift the proof of
the theorem pre_permutes using UP, he had to prove the univalent
parametric relation between the unlifted and lifted versions of the
functions that the theorem referenced; this pulled in the functional
extensionality axiom, which was not necessary using Pumpkin Pi.

In the second scenario, to simulate the incremental workflow Pump-
kin Pi requires, he transported along each intermediate equivalence
to each intermediate type, then unpacked the result. For example,
the ornament from bst to avl passed through an intermediate type;
He transported search to use this type first, unpacked the result, and

7 i5-5300U, at 2.30GHz, 16 GB RAM

http://github.com/uwplse/ornamental-search/tree/itp+equiv/plugin/eval

4.6 results 103

10 100 1000 10000 100000

preorder
Unlifted 0.0 0.0 0.0 3.0 (1.00x) 37.0 (1.00x)
Pi 0.0 0.0 0.0 3.0 (1.00x) 35.0 (0.95x)
UP 0.0 1.0 27.0 486.5 (162.17x) 8078.5 (218.33x)

Figure 39: Median runtime (ms) of the original (tree) and transported
(Sized.tree) preorder over ten runs with test inputs ranging
from about 10 to about 10000 nodes.

10 100 1000 10000 100000

preorder
Unlifted 0.0 0.0 0.0 3.0 (1.00x) 37.0 (1.00x)
Pi 71.5 71.0 69.0 75.0 (25.00x) 109.0 (2.95x)
UP 1.0 11.0 152.0 2976.5 (992.17x) 56636.5 (1530.72x)

search
Unlifted 0.0 0.0 2.0 (1.00x) 3.0 (1.00x) 29.0 (1.00x)
Pi 12.0 14.0 12.0 (6.00x) 15.0 (5.00x) 50.0 (1.72x)
UP 1.0 5.0 67.0 (33.50x) 1062.0 (354.00x) 15370.5 (530.02x)

Figure 40: Median runtime (ms) of the original (tree) and transported
(avl) preorder, plus the original (bst) and transported (avl)
search, over ten runs with inputs ranging from about 10 to
about 100000 nodes.

then repeated this process. In this scenario, using UP differently or
using Pumpkin Pi with a manual configuration could have saved some
work relative to the workflow chosen, since with those workflows, it
is possible to skip the intermediate type;8 Pumpkin Pi with automatic
configuration is best fit where an incremental workflow is desirable.

4.6.2.2 Performance

Relative to the UP black-box transformation, Pumpkin Pi produced
faster functions. Figure 39 summarizes runtime in the first scenario for
preorder, and Figure 40 summarizes runtime in the second scenario for
preorder and search. The inorder and postorder functions performed
similarly to preorder. The functions Pumpkin Pi produced imposed
modest overhead for smaller inputs, but were tens to hundreds of
times faster than the functions that UP produced for larger inputs.
This performance gap was more pronounced over multiple iterations.

Pumpkin Pi also produced smaller terms: in the first scenario, 13

vs. 25 LOC for preorder, 12 vs. 24 LOC for inorder, and 17 vs. 29

LOC for postorder; and in the second scenario, 21 vs. 120 LOC for
preorder, 20 vs. 119 LOC for inorder, 24 vs. 125 LOC for postorder,
and 31 vs. 52 LOC for search. In the first scenario, the transported
proof of pre_permutes using Pumpkin Pi was 85 LOC; the transported
proof of pre_permutes using UP was 1463184 LOC.

8 The performances of the terms that the UP black-box transformation produces are
sensitive to the equivalence used; for a 100 node tree, this alternate workflow in
UP produced a search function hundreds of times slower and traversal functions
thousands of times slower than the functions that Pumpkin Pi produced. The lifted
proof of pre_permutes using UP failed to normalize with a timeout of one hour.

104 proof repair across type equivalences

I suspect Pumpkin Pi provided these performance benefits because it
directly transformed eliminators, whereas the UP black-box transfor-
mation implemented transport in a standard way, defining transported
functions in terms of the original functions. The multiple iteration case
in particular highlights this, since UP’s black-box approach makes
lifted terms much slower and larger as the number of iterations in-
creases, while Pumpkin Pi’s approach does not.

4.7 conclusion

The Pumpkin Pi plugin extends the Pumpkin Patch plugin suite with
support for a broad class of changes in datatypes. It also supports
patch application in a principled manner, is built with workflow
integration including tactics in mind, and can save and in fact already
has saved work for proof engineers in practical use cases. At this
point, it is fair to say that my thesis holds:

Changes in programs, specifications, and proofs can carry
information that a tool can extract, generalize, and ap-
ply to fix other proofs broken by the same change (Sec-
tions 3.2, 3.3, 3.4, 4.2, 4.3, and 4.4). A tool that automates
this (Sections 3.5 and 4.5) can save work for proof engi-
neers relative to reference manual repairs in practical use
cases (Sections 3.6 and 4.6).

And so there really is reason to believe.
I will talk about what that means for proof engineers—and what

I believe the next era of verification can look like—in Chapter 6. But
first, I will back up a bit and talk about related work.

5
R E L AT E D W O R K

Proof repair can be viewed as program repair (Section 5.2) for the
domain of proof engineering (Section 5.1).

5.1 proof engineering

Proof repair falls into the domain of proof engineering, or the tech-
nologies that make it easier to develop and maintain systems verified
using proof assistants. Proof repair in this thesis is implemented for
Coq, but there are many other proof assistants to choose from, some
with different implications for proof repair (Section 5.1.1). In contrast
with proof repair, most work on proof maintenance focuses on design-
ing proofs to be robust to change to begin with (Section 5.1.2). While
proof repair is new, it builds on work in proof evolution (Section 5.1.3),
proof reuse (Section 5.1.4), and other kinds of proof automation (Sec-
tion 5.1.5). QED at Large contains a detailed overview of all of these
proof engineering technologies and more.

5.1.1 Proof Assistants

Proof engineering as defined in QED at Large considers proof assis-
tants that satisfy the de Bruijn criterion [16, 17], which requires that
they produce proof objects that a small proof-checking kernel can
check. This includes Coq [38]—the proof assistant that this thesis fo-
cuses on—but also other proof assistants like Isabelle/HOL [81], HOL
Light [78], HOL4 [117], Agda [7], Lean [97], and NuPRL [123]. These
proof assistants have different foundations (in the case of Coq, CICω),
different notions of proof objects (in the case of Coq, proof terms in
Gallina), and different automation built on top of those proof objects
(in the case of Coq, proof scripts made up of Ltac tactics). Differences
in proof assistants along these dimensions have different implications
for proof repair.

foundations The foundations that make up proof assistants vary
by proof assistant. The foundations of Coq, for example, build on the
intensional type theory CICω. CICω is intuitionistic [76] (or construc-
tive) in that proofs in CICω do not assume the law of the excluded middle

105

106 related work

(LEM), which states that for any proposition, either that proposition is
true, or its negation is true. CICω also does not assume double negation
elimination (DNE), which states that the negation of the negation is the
original proposition or type. Because of this, in CICω, it is not possible
in general to prove existence by proving that nonexistence implies a
contradiction. Instead, one must supply a witness to the existential.1

The proof assistants Isabelle/HOL [81], HOL4 [117], and HOL
Light [78] are built on classical foundations in that they assume both
LEM and DNE. The proof assistants Agda and Lean are built on
constructive foundations that are similar to Coq, though with some
minor differences. Lean in particular further assumes an axiom called
uniqueness of identity proofs (UIP), which states that all proofs of propo-
sitional equality at a given type are equal. As I detail in QED at
Large, this axiom is incompatible with the univalence axiom from
homotopy type theory [154], which states that equivalence is equiva-
lent to propositional equality. Cubical type theory—of which there are
two flavors [35, 10]—gives univalence a constructive interpretation, so
that it is no longer an axiom. Implementations of cubical type theory
include RedPRL [135] and Cubical Agda [6].

Proof repair in this thesis assumes constructive rather than classical
foundations. The core techniques should largely transfer to other proof
assistants built on constructive foundations, like Agda and Lean. It
is possible that the particular transformations may have to account
for differences, like the presence of UIP in Lean, which may make
the general correctness statement of the Pumpkin Pi transformation—
one that relies on univalence at the level of the metatheory—less
meaningful. The techniques transfer with a bit more resistance to
proof assistants built on classical foundations, since classical proofs
may omit information helpful for repair.

proof objects In proof assistants that satisfy the de Bruijn cri-
terion, the proof object is the certificate that the kernel can check
for a given proof to make sure that it proves a given theorem. In
Coq, proof objects are proof terms in Gallina; the kernel verifies
these terms by checking their types. As Karl notes in QED at Large,
producing explicit proof objects and checking them is just one of the
two dominant approaches to satisfying the de Bruijn criterion—the
approach followed by Coq, Agda, and Lean. The other approach is to
produce ephemeral proof objects that are correct by construction [15]—an
approach followed by Isabelle/HOL, HOL Light, and HOL4.

Proof repair in this thesis assumes explicit rather than ephemeral
proof objects. One possible way to apply the same techniques to proof
assistants with ephemeral proof objects is to follow the following
workflow:

1 Perhaps notably, though, the witness to the existential can be that DNE provably holds
for a particular instance. This is true for decidable domains in CICω .

5.1 proof engineering 107

1. Reify ephemeral proof objects to be explicit.

2. Apply differencing and transformations over those objects.

3. Decompile the transformed proof objects to automation.

Section 6.2 describes a potential specific instance of this workflow for
Isabelle/HOL.

automation Typically, layers of proof automation act as an inter-
face between the proof engineer and the kernel. In Coq, for example,
proof engineers write proof scripts interactively using tactics. Proof
engineers can combine existing tactics, or write their own, either in
the general-purpose programming language OCaml or in the tactic
language Ltac.

In contrast, in Isabelle/HOL, proof engineers commonly write
proofs in Isabelle/Isar [163, 157], a high-level language for struc-
turing and composing propositions, facts, and proof goals. Proof
engineers can also sometimes mix languages for automation. For
example, Coq proof engineers can write proofs using the high-level
proof language SSReflect [67, 66], or they can even mix SSReflect with
Ltac tactics. Isabelle/HOL proof engineers can write automation in
the general-purpose language Standard ML—which was originally
introduced specifically for developing proof automation [69]—or with
the Ltac-inspired tactic language Eisbach [107]. Agda proof engineers
typically rely only on reflection [50, 72, 155] and not on any additional
language to automate their proofs.

The approach to proof repair taken in this thesis is independent of
the kind of automation used, or the language used to implement it. All
that needs to change to transfer this approach to a different tactic or
proof language, for example, is the implementation of the decompiler.
Still, some kinds of automation may produce proof terms that are
larger or more difficult to manipulate, or may make decompilation
especially difficult.

Better languages for automation may help circumvent some of the
difficulties of repairing tactics directly, without relying a decompiler.
Or, they may help simplify the implementation of the decompiler. The
Ltac successor Ltac2 [129], for example, is much more structured than
Ltac, and may help ease proof repair in Coq in the future.

5.1.2 Proof Design

Much work focuses on designing proofs to be robust to change, rather
than fixing broken proofs. This can take the form of robust abstractions
or robust automation.

robust abstractions Proof engineers often use abstractions to
make proofs less likely to break to begin with. Examples of this

108 related work

include using information hiding techniques [168, 87] or any of the
structures [33, 148, 144] for encoding interfaces in Coq. CertiKOS [70]
introduces the idea of a deep specification to ease verification of
large systems. Design principles for specific domains (like formal
metatheory [13, 48, 49]) can also make verification more tractable.
Design and repair are complementary: design requires foresight,
while repair can occur retroactively. Repair can help with changes that
occur outside of the proof engineer’s control, or with changes that are
difficult to protect against even with informed design.

robust automation Another approach to robust design is to
use heavy proof automation, for example through custom program-
specific tactics [32] or general-purpose hammers [22, 128, 84, 42]. The
degree to which proof engineers rely on automation varies, as seen
in the data from the REPLicaREPLicaREPLica user study. Automation-heavy proof
engineering styles localize the burden of change to the automation,
but can result in proof terms that are large and slow to type check,
and tactics that can be difficult to debug. While these approaches are
complementary, more work is needed for proof repair tools to better
support developments in this style.

5.1.3 Proof Evolution

The need to evolve proofs to changes was raised as a barrier for
verification of real software systems as far back as 1977 [51]. This
barrier impacted real developments. A review [55] of the evolution of
the seL4 verified OS microkernel [89], for example, notes that while
customizing the kernel to different environments may be desirable,
“the formal verification of seL4 creates a powerful disincentive to
changing the kernel.” Another paper [101] motivates and describes
updates to the initial CompCert memory model that include changes
in specifications, automation, and proofs [37].

As I have shown in this thesis, breaking changes are not always
in the proof engineer’s control. Proof refactoring [164] tools—meant
to help proof engineers redesign proof developments—can also help
proof engineers repair proofs in response to breaking changes. These
tools are the proof engineering equivalent of program refactoring tools,
or tools that restructure code in a way that preserves semantics [124].
Some proof refactoring tools developed in parallel with my thesis work
can be viewed as proof repair tools. This section describes refactoring
tools that work at the level of proof scripts and proof terms; Pumpkin

Patch is the only tool suite for proof evolution I am aware of that
supports both.

proof scripts A few proof refactoring tools operate directly over
proof scripts: POLAR [53] refactors proof scripts in languages based

5.1 proof engineering 109

on Isabelle/Isar [157], CoqPIE [143] is an Integrated Development Envi-
ronment (IDE) with support for simple refactorings of Ltac scripts, and
Tactician [5] is a refactoring tool for proof scripts in HOL Light that fo-
cuses on refactoring proofs between sequences of tactics and tacticals.
This approach is not tractable for more complex changes [142].

Some proof refactoring tools focus on specific refactoring tasks
that are common in proof development. For example, Levity [24]
is a proof refactoring tool for an old version of Isabelle/HOL that
automatically moves lemmas to maximize reuse. The design of Levity
is informed by experiences with two large proof developments. Levity
addresses problems that are especially pronounced in the domain
of proof refactoring, such as the context-sensitivity of proof scripts.
Levity has seen large scale industrial use.

proof terms There is little work on refactoring proof terms di-
rectly. This is the main focus of Chick [142], which refactors terms
in a language similar to Gallina. Chick was developed in parallel
to the Pumpkin prototype, and both tools influenced one another.
Consequentially, Chick and Pumpkin Patch have similar workflows:
both take example changes supplied by the proof engineer, use differ-
encing algorithms to determine the changes to make elsewhere, and
then apply the changes they find. Chick supports insertion, deletion,
modification, and permutation of subterms. Chick does this using a
syntactic algorithm that handles only simple transformations, and so
presents itself primarily as a proof refactoring tool.

Another term-based refactoring tool is the refactoring tool Refactor-
Agda [165] for a subset of Agda terms. RefactorAgda supports many
changes, including changing indentation, renaming terms, moving
terms, converting between implicit and explicit arguments, reordering
subterms, and adding or removing constructors to or from types; it
also documents ideas for supporting other refactorings, such as adding
and removing arguments and indices to and from types. Both Chick
and RefactorAgda support primarily syntactic changes and operate
solely over proof terms.

5.1.4 Proof Reuse

Proof repair is ultimately a form of proof reuse—applying software
reuse principles to proof assistants in order to repurpose existing
proofs as much as possible. Like software reuse, proof reuse leverages
design principles and language constructs. In addition, the interactive
nature of proof assistants naturally leads to a class of proof reuse
technologies less explored in the software reuse world: automated
tooling. Proof repair falls into the class of automated tooling for proof
reuse. This section describes other automated tooling for proof reuse
that may be useful to a future proof repair tool.

110 related work

extending inductive types Pumpkin Patch is yet to save proof
engineers work when it comes to extending inductive types with new
constructors. In the future, it may help to draw on early work in proof
reuse for extending inductive types. For example, a 2004 paper [23]
describes a tactic to adapt proof obligations to changes in inductive
types. Soon after, a 2006 paper [115] provides a high-level description
of a possible method to synthesize missing proofs for those new
obligations using a type reconstruction algorithm, though it is not
currently implemented.

proof transformation Proof repair in this thesis combines
differencing with proof term transformations. The idea of proof
term transformations dates back to at least 1987 [131]. Any proof
reuse tool that works by proof term transformation can, in theory,
be used for repair, especially when coupled with something like the
Pumpkin Pi decompiler.

The Pumpkin prototype implements a kind of proof generalization.
This is a common kind of proof term transformation that arose in the
context of proof assistants in the 1990s [73, 92, 133]. Coq’s generalize
tactic does basic syntactic generalization [39]. Both Pumpkin and a
tool [83] for generalizing theorems in Isabelle/HOL implement more
complex transformations for generalization.

Magaud & Bertot 2000 [105] implement a proof term transforma-
tion between unary and binary numbers that fits into a Pumpkin Pi
configuration. The expansion algorithm from the paper describing
this transformation may help guide the design of better unification
heuristics for Pumpkin Pi, in particular when identifying applications
of definitional EtaEtaEta and IotaIotaIota.

The refinement framework CoqEAL [36] transforms functions across
relations in Coq, and these relations can be more general than Pump-
kin Pi’s equivalences. However, while Pumpkin Pi supports both
functions and proofs, CoqEAL supports only simple functions due to
the problem with definitional equality that IotaIotaIota addresses. CoqEAL
may be most useful to chain with Pumpkin Pi to get faster functions, or
to help support better workflows for changes that do not correspond
to equivalences.

One of the automatic configurations in Pumpkin Pi automates dis-
covery of and transport across equivalences that correspond to al-
gebraic ornaments. This automatic configuration formed the basis
of the first tool for ornamentation to operate over a non-embedded
dependently typed language, initially called Devoid—but later gen-
eralized to arbitrary equivalences and renamed to Pumpkin Pi. This
stands in contrast to the many existing embedded implementations
of ornaments [44, 90, 45, 91, 43] that had arisen since their discov-
ery [108]. Devoid essentially moved the automation-heavy approach
of Ornamentation in ML [167], which operates on non-embedded ML

5.1 proof engineering 111

code, into CICω. It also introduced the first differencing algorithm to
identify ornaments, which in the past had been identified as a “gap”
in the literature [91]. Other kinds of ornaments may prove useful
for future Pumpkin Pi differencing algorithms and configurations. A
recent thesis [166] on ornaments may prove especially useful.

transfer & transport The need to automatically transfer func-
tions and proofs across equivalences and other relations is a long-
standing challenge for proof engineers [105, 20, 104]. Particular suc-
cessful is the widely used Transfer [79] package, which supports proof
reuse in Isabelle/HOL. Transfer works by combining a set of exten-
sible transfer rules with a type inference algorithm. Transfer is not
yet suitable for repair, as it necessitates maintaining references to both
datatypes. Section 6.2 describes one possible path building on Transfer
to implement a proof repair tool for Isabelle/HOL.

The Pumpkin Pi transformation implements a particular kind of
transfer called automatic transport. The name is potentially confusing:
transport itself refers to a particular form of rewriting along a propo-
sitional equality, or inhabitance of the identity type. It often (but
not always) refers to univalent transport, an application of an elimi-
nator derivable in homotopy type theory from univalence [154] that
rewrites along the identity type corresponding to an equivalence [56].
Automatic transport refers to any automated tooling for rewriting along
propositional equalities that behaves like transport at the level of ei-
ther internally to the theory or (as in Pumpkin Pi) externally in the
metatheory. Automatic transport is a kind of transfer, but by virtue
of it being automatic, not by virtue of it applying transport.2 Transfer
may apply more broadly than across equalities or equivalences.

Pumpkin Pi implements automatic univalent transport externally,
without relying on any additional axioms at the level of the theory
itself. The UP black-box transformation [150] approximates automatic
univalent transport internally in Coq, only sometimes relying on ad-
ditional axioms. The UP black-box transformation does not remove
references to the old type, making it poorly suited for repair. How-
ever, unlike Pumpkin Pi, it supports type-directed search—analogous
functionality may help improve Pumpkin Pi substantially.

Recent work [151] extends UP with a white-box transformation that
may work for repair. However, the white-box transformation imposes
proof obligations on the proof engineer beyond those imposed by
Pumpkin Pi. In addition, it comes with neither differencing algo-
rithms for equivalences nor proof script generation. It also does not
support changes in inductive structure, instead relying on its original
black-box functionality; IotaIotaIota solves this in Pumpkin Pi, and is based
on lessons learned from reading that article. The most fruitful progress
may come from combining these tools.

2 I got this wrong in QED at Large.

112 related work

5.1.5 Other Proof Automation

Proof repair implements a kind of proof automation. New proof
automation continues to make proof repair more feasible.

ontology repair GALILEO [29] is a tool built on Isabelle/HOL
for identifying and repairing faulty ontologies in response to contra-
dictory evidence. It uses repair plans to determine when to trigger a
repair, and how to repair the ontology. It has been applied to repair
faulty physics ontologies, and may have applications for proof repair.

knowledge sharing methods Knowledge sharing methods [60]
match concepts across different proof assistants with similar logics and
identify isomorphic types, and may have implications for proof repair.
Later work uses these methods in combination with HOL(y)Hammer
to reprove parts of the standard library of HOL4 and HOL Light using
combined knowledge from the two proof assistants [61]. More re-
cently, this approach has been used to identify similar concepts across
libraries in proof assistants with different logics [62]. These methods
may have applications when repairing proofs even within the same
logic, using information from different libraries, different commits, or
different representations of similar types.

e-graphs The Pumpkin Pi proof term transformation can in some
sense be viewed as a rewrite system across equivalences. A number
of modern rewrite systems use data structures called e-graphs [118]
for managing equivalences. E-graphs have been implemented in
Lean [145] (assuming UIP), and in Cubical Agda [65] (implying uni-
valence). Similar implementations of e-graphs could help improve
Pumpkin Pi and similar tools to support type-directed search and
more (see Section 6.2).

5.2 program repair

Proof repair can be viewed as a form of program repair [114, 63] for
proof assistants. Proof assistants like Coq are an especially good fit
for program repair (Section 5.2.1). While it is not straightforward to
apply existing program repair techniques to proof assistants, looking
to them for inspiration may help improve proof repair tools more in
the future (Section 5.2.2).

5.2.1 A Good Fit

A recent survey of program repair distinguishes between repair tools
based on the oracle they use to judge whether a patch is correct. For
example, proof repair is a kind of specification-based repair, since it uses

5.2 program repair 113

a specification (a goal type derived from differencing) as an oracle.
Program repair tools sometimes use other oracles—commonly, test
suites (test-based repair).

A recent review [134] of a popular test-based program repair tool [96]
and its variants shows that most of the reported patches generated
by the tool are not correct. These observations are later reaffirmed
in a different setting [106]. In response, the paper recommends that
program repair tools draw on extra information, like specifications
or example patches. In Coq, specifications and examples are rich
and widely available: specifications thanks to dependent types, and
examples thanks to constructivism. This shows why proof repair in
Coq is an especially good fit for program repair.

specifications One limitation of test-based program repair tools
is that tests in evaluation suites are often underspecified, so it can
be hard to know when a patch to a program is correct. For example,
the review notes that some tests in the evaluation suite for the tool
check whether a program terminates with an exit code of 0, but do
not check the program output. In addition, patches are often overfit to
the tests in the test suite; additional tests expose problems with those
patches. In fact, some patches are outright harmful, as they introduce
new problems which the test suite does not check for.

In contrast, in the world of proof repair, there is always a specifica-
tion to work with—the theorem being proven—so a proof repair tool
does not need to rely on tests. Furthermore, the scope of properties
that can be specified in proof assistants like Coq is especially large
thanks to its expressive type system CICω, with polymorphism and
dependent types. The richness of the type theory further makes it
possible for Pumpkin Patch to check itself along the way and make
sure it is on the right track.

Still, there is always a chance that the specification itself must change
in order for proof repair to work, as I showed with Pumpkin Pi. In
those cases, it is helpful to have some assurance that the specifications
the tool produces are meaningful—in the case of Pumpkin Pi, that the
old and new specifications are equal up to transport along the change
in the datatype. It is also useful to have a human in the loop to check
specifications in the end, as all of the plugins in Pumpkin Patch do.
Section 5.2.2 discusses other specification-based repair tools, as well
as other repair tools that bring a human into the loop.

examples Another challenge for test-based program repair tools
is defining the correct search space and searching efficiently within
it. For example, the review found that running the same tool on
strengthened versions of the test suites produced no patches at all in
the time allotted. One possible reason for this is that the tools could

114 related work

not search for the correct patches efficiently enough. Example-based
techniques can help navigate a large search space quickly.

Pumpkin Patch uses examples—in the form of changes to datatypes
or proofs—to derive patches. The constructive foundations of Coq
make this especially appealing and powerful. For example, existence
proofs in Coq must be accompanied by a witness. Each of these
witnesses is in effect an example that Pumpkin Patch can extract and
generalize, narrowing down the search space of possible repairs.

Thanks to the richness of the type theory, Pumpkin Patch can in
practical use cases repair proofs by generalizing a very small number
of examples, like a single example patched proof, or a single example
change to a datatype. Section 5.2.2 describes other example-based
repair tools.

5.2.2 Techniques for Inspiration

Proof repair can in the future draw on many of the techniques that
program repair tools use, even though the tools themselves do not
carry over in a straightforward way (recall Section 2.3.1). This sec-
tion discusses techniques from existing program repair tools that are
relevant to proof repair. It focuses in particular on what a recent
survey [114] of program repair calls behavioral repair, or patching
the code, rather than state repair, or patching the dynamic behav-
ior. Among behavioral repair tools, it focuses on regression repair,
specification-based repair, repair by example, and other techniques
that bring a human into the loop.

regression repair Regression repair tools target regression bugs,
like changes that cause a set of tests (the regressed tests) that used to
pass to no longer pass. Test-based regression repair tools repair code
such that regressed tests pass on the repaired code. In some sense,
proof repair is a kind of regression repair, as it repairs proofs that used
to succeed, but after some change, no longer do (the regressed proofs).
A section by Karl in QED at Large describes the correspondence
between regressed proofs and regressed tests in more detail, and
details existing techniques [126, 159, 18, 27, 158, 19, 47, 160, 161, 162]
for rechecking regressed proofs.

One test-based regression program repair tool is ReAssert [46] for
Java, which focuses on regressions caused by refactoring. ReAssert
uses a program analysis to identify broken code, chooses a strategy
for repair, and suggests repairs to the programmer using that strategy
that cause regressed tests to pass. It loops through strategies until
one works or none remain. Another such tool is Relifix [152] for
C. Relifix uses a manual inspection to find code transformations
based on regressions, then searches those transformations for patches
that make the regressed tests pass without making other tests fail.

5.2 program repair 115

Both ReAssert and Relifix are configurable like Pumpkin Pi, and may
provide interesting examples of configurations or ways of inferring
new configurations.

While not quite a regression repair tool, GRAFTER [171] is a related
tool that adapts the tests themselves, rather than the code under test.
Its focus is on testing software clones for errors introduced during
the cloning process. It uses a static analysis to identify variables and
methods that correspond between the clones, then ensures that the
flow is preserved using that mapping. The user can then run the
new tests to compare behavior. It provides a guarantee about type
safety, and it performs reasonably well on some real-world software.
GRAFTER, like Pumpkin Patch, takes an approach to repair that
uses a form of differencing. Looking to this to help inform new
differencing algorithms for Pumpkin Patch could be fruitful, in spite
of foundational differences of the target domains.

specification-based repair Some tools use specifications as
an oracle, like Pumpkin Patch. For example, AutoFix-E [156, 130]
uses contracts to repair Eiffel programs. Specification-Based Program
Repair Using SAT [68] encodes pre and post conditions in combination
with other constraints from the code into SAT and then uses Alloy
to generate patches. Other tools combine test-based program repair
with logical specifications and automated solving [74, 119, 119, 169,
109, 86]. For future proof reuse tools, making better use of existing
proof automation in proof assistants to generate patches that satisfy
specifications may prove fruitful.

Proof-directed repair [52] presents a methodology for repairing pro-
grams based on information from incomplete proofs in Isabelle/HOL.
Essentially, the programmer writes a proof, and then uses feedback
from the attempted proof to debug and fix the code. In a sense, since
if the repair succeeds the proof should go through, it uses proofs as an
oracle. The paper presents a few techniques for fixing the broken code,
then shows some examples using those techniques with existing tools.
It does not yet automate it in a tool. Still, perhaps using partial proofs
as in proof-directed repair can help a proof repair tool like Pumpkin

Patch better repair functions. It also matches the workflow of proof
engineers seen in the REPLicaREPLicaREPLica user study.

repair by example Some program repair tools work by example,
like Pumpkin. Prophet [103], a test-based repair tool for C, uses
human-generated patches from software repositories as examples.
These examples can come from different applications from the one
that is being repaired. Prophet uses differencing over ASTs to extract
features that describe the behavior of the example patch abstracted
from its particular application. From these patches, it learns a model
of correct code. Then, it localizes faults and generates candidates,

116 related work

which it ranks according to the learned model. In this way, it produces
patches that not only cause the tests to succeed, but also are likely
according to the learned model to be correct to humans.

The repair tool QACrashFix [59] uses pairs of buggy and fixed code
from Q & A sites like StackOverflow to derive patches for crashing
input bugs. These patches are in the form of edit scripts, so that they
can apply in different contexts. It uses a preprocessing step to find the
right query for the Q & A site, then they look at answers for buggy
and fixed code examples, then from those they derive edit scripts to
try to fix the bug. It then uses a combination of tests and human
validation to determine whether the patches are correct.

SearchRepair [86] turns code from repositories into a searchable
database. To form this database, it uses a static analysis to encode the
input-output behavior of the code as constraints for an SMT solver.
It then localizes the fault in the buggy program, encodes the buggy
program similarly, performs a semantic code search over that database
to identify candidate patches, and finally uses the test suite as an
oracle to determine whether candidates succeed.

Systematic editing [111] is a technique that could help repair by
example tools. This technique generalizes an edit to a program into a
program transformation that can apply in similar program contexts.
It works by syntactic differencing over the AST of the example edit,
abstracting the difference, and applying it elsewhere. It can handle
insertions, deletions, updates, and moves. Lase [112] implements and
improves on this, making use of multiple examples instead of just one,
and also automatically identifying locations to apply transformations.
Similarly, spdiff [8] generalizes patches into semantic patches for
Cocinelle [125], which can then apply those patches automatically in
different contexts. This way, the library designer can write a semantic
patch himself, or spdiff can infer one.

A number of program repair tools above—much like the proof
repair tools described in this thesis—build on differencing algorithms.
Existing work in differencing and incremental computation may help
improve semantic differencing algorithms for both program and proof
repair. Type-directed diffing [113] finds differences in algebraic data
types. Semantics-based change impact analysis [12] models semantic
differences between documents. Differential assertion checking [94]
analyzes different versions of a program for relative correctness with
respect to a specification. Incremental λ-calculus [26] introduces a
general model for program changes. All of these may be useful for
improving semantic differencing.

Some of these program repair tools use machine learning to gen-
eralize examples—I discuss some ideas combining proof repair with
machine learning in Section 6.2. Several of the tools identify examples
from code repositories and libraries. These tools may offer some in-
sights for how to break down the large composite changes typically

5.2 program repair 117

found in static artifacts or in code repositories into smaller incremental
changes like those made during development in the REPLicaREPLicaREPLica user
study. Isolating changes may help with extracting repair benchmarks
from artifacts, supporting library and version updates, and integrating
with Continuous Integration (CI) systems.

human in the loop Some tools avoid using test suites to judge
correctness of candidate patches, and instead bring the programmer
into the loop. For example, both ReAssert [46] and QACrashFix [59]
suggest repairs directly to the programmer—a workflow that partially
inspired the tactic suggestion interface in Pumpkin Pi. In general,
an approach that suggests repairs to proof engineers in the end and
allows them to vet the specifications and tactics used seems to fit
naturally into proof engineering workflows.

A natural integration point for a repair tool like Pumpkin Patch is at
the IDE level. CatchUp! [75] is an IDE plugin (implemented for Eclipse
in Java) that automatically adapts library clients to API refactorings.
It records refactorings that the library developer makes inside of the
IDE, then replays the refactorings in in client code, reconstructing
everything from the recorded trace. Future proof repair tools may
benefit from IDE integration of this kind. For example, it may be useful
to record changes within a project inside of an IDE so that Pumpkin

Patch can find patches corresponding to incremental changes without
the proof engineer needing to deconstruct them manually. It may also
help to have something like the trace file in CatchUp! so that library
developers can easily provide patches for client proof developments.

6
C O N C L U S I O N S & F U T U R E W O R K

Through a combination of semantic differencing and proof term
transformations, my proof repair tool suite can extract, generalize,
and apply the information that a change carries to fix proofs broken
by the same change. Proof repair can save and in fact already has
saved work for proof engineers relative to reference manual repairs
in practical use cases. And so proof repair is reason to believe that
verifying a modified system should often, in practical use cases, be
easier than verifying the original the first time around, even when the
proof engineer does not follow good development processes, or when
the change occurs outside of the proof engineer’s control.

This sentiment was echoed recently in an article by an industrial
proof engineer [54] (emphasis mine):

We have reason to think such proof repair is tractable. Rather
than trying to synthesize a complete proof from nothing—
a problem known to be immensely difficult—we start from
a correct proof of fairly similar software. We will be at-
tempting proof reconstruction within a known neighborhood.

The proof engineer credited my proof repair work on social media,
but noted that there ought to be much more work in this space.

I agree (Secton 6.1), and I want to take that a step further: I believe
that we can build on proof repair to build the next era of proof
engineering. I believe that era will be one in which programmers of
all skill levels across all domains can develop and maintain verified
systems—an era of proof engineering for all (Section 6.2).

6.1 future work: patching the gaps of repair

In this thesis, I have shown you two kinds of proof repair: by example
and across equivalences. The corresponding tools together support
just a small chunk of the proof repair scenarios that proof engineers
encounter—albeit a practical chunk. Solving proof repair more gener-
ally hinges on broadening the scope of changes and terms that proof
repair tools can support.

119

120 conclusions & future work

scope of changes The Pumpkin Pi transformation supports equiv-
alences; ideally, it should support arbitrary relations. The refinement
framework CoqEAL [36] already supports relations that are not equiv-
alences, though only for functions and not yet for proofs; extending
CoqEAL and integrating it with the Pumpkin Pi transformation is a
natural first step toward supporting arbitrary relations. Integrating Co-
qEAL may help with supporting changes in datatypes that—without
quotient types—cannot be expressed as equivalences [9]. It may also
help with supporting changes that can be expressed as equivalences
only with some resistance, like the change adding a constructor in
Figure 38 on page 99, or any of the many similar changes in the
REPLicaREPLicaREPLica user study data. And it may help with supporting changes
in algorithms, like replacing slow unary addition with fast binary
addition—a step still left to the proof engineer.

Differencing for an arbitrary change is of course undecidable, but
that does not mean each proof engineer should resign herself to only
the differencing algorithms that ship with the proof repair tools she
uses. Proof repair tools should make it easy for each proof engineer
to implement new differencing algorithms to support the classes of
changes that matter to her. Pumpkin Patch lets only those proof engi-
neers who are OCaml and Coq experts implement these differencing
algorithms; future proof repair tools ought to expose frameworks that
help even non-experts do the same.

Proof repair tools should ideally help proof engineers fix broken
proofs in response to changes in the implementations of tactics, and
should even help proof engineers repair the implementations of tactics
themselves. The same holds for changes in notation. Supporting either
of these will require innovations beyond those seen in this thesis.

scope of terms Both Pumpkin and Pumpkin Pi place some re-
strictions on Gallina terms. For example, the preprocessing tool by
Nate translates only some fixpoints to eliminators, even though in
principle it ought to be possible to translate all fixpoints to eliminators
(Section 4.5.1.3). Furthermore, there is not yet a corresponding post-
processing tool to get back from transformed eliminators to fixpoints.
That is, even though eliminators in Gallina do reduce to fixpoints, pre-
processing a fixpoint and then reducing the result does not necessarily
produce a fixpoint that is definitionally equal to the original. Right
now, the step of getting from a proof about the preprocessed term back
to a proof about the original term—while easy in my experience—is
left to the proof engineer. A postprocessing tool ought to automate
this step with strong guarantees and a smooth user experience.

An alternative way to support pattern matching and fixpoints is
to support them in the proof term transformations natively. I have
found reasoning about pattern matching and fixpoints more difficult
than reasoning about eliminators, but of course not everyone is me.

6.2 the next era : proof engineering for all 121

This may prove not to be so difficult, and if so, it may be an approach
worth taking in a future repair tool.

Neither Pumpkin nor Pumpkin Pi supports the two features that
make it possible to construct infinite streams of data in Gallina: cofix-
points and coinduction. Differencing in Pumpkin struggles to reason
about nested induction. The Pumpkin Pi transformation sometimes
fails to reason properly about terms with existential variables, which
may show up in terms when the unification step is unable to fully
resolve parameters and indices. And Pumpkin Pi does not yet make
it possible to write custom unification heuristics, and so sometimes
forces proof engineers to write manual annotations instead. Support-
ing all of these ought to help build an even more useful proof repair
tool—so that we may look to the next era.

6.2 the next era: proof engineering for all

So, what would it take to empower programmers of all skill levels
across all domains to formally verify software systems? Since I first
asked this question at the beginning of this thesis, I have introduced
proof repair tools that bring us closer to this dream. But these tools
still target expert proof engineers. There is a lot more that we as a
community can do to make proof engineering accessible more broadly.

I conclude with a discussion of twelve future project ideas building
up to the next era of proof engineering for all. I hope that these ideas
inspire you!

Proof Engineering for Experts

In the future, I want maintaining proofs to be seamless for expert proof
engineers. I want experts to have easy access to proof repair tools that
automate all but the creative parts of maintenance. But for that to
happen, we need to make proof repair tools more widely available,
powerful, and natural to use.

availability The biggest barrier to widely available proof repair
for experts is that the implementation is for just one proof assistant,
Coq. The techniques from this thesis should handle proof assistants
with similar foundations, like Agda, and possibly Lean.1 With a bit of
adjustment, my hope is that the techniques should handle even proof
assistants with radically different foundations, like Isabelle/HOL,
which is classical and has ephemeral proof objects. One idea for
adapting Pumpkin Pi to Isabelle/HOL is to first reify proof terms
using Isabelle/HOL-Proofs, then apply a transformation based on the

1 Lean assumes UIP, which is incompatible with univalence. It is not yet clear to me
what that assumption would mean for implementing the Pumpkin Pi transformation
in Lean. Everything else should carry over.

122 conclusions & future work

Transfer [79] package, and finally decompile the transformed terms to
updated automation in the end.

power Proof repair is powerful, but not as powerful as it could
be. In the future, proof repair tools should run fully automatically in
response to proof assistant version updates. They should break down
large changes into smaller pieces—perhaps by drawing on work in
change and dependency management [80, 11, 27] to identify changes,
then use the factoring transformation to break those changes into
smaller parts. And they should support an even broader and more
practical class of changes than they do now, like all of the changes
identified in Section 6.1.

natural use The decompiler is a step toward a natural proof
repair tool, but it still produces proof scripts heuristically, with no
regard for style. Proof repair tools should ideally produce proof scripts
that are natural for experts, regardless of style. Toward this end, I have
just begun a promising project with RanDair Porter, Emily First, and
Yuriy Brun on integrating the decompiler with the machine learning
proof synthesis tool TacTok [57]. By ranking hints with TacTok, it
should be straightforward to produce more natural proof scripts, even
using fixed training data. More difficult—but highly valuable—will
be to train the decompiler to match the style of the expert using the
tool.

Proof Engineering for Practitioners

In the future, I want developing and maintaining proofs to be much
easier for practitioners. But for that to happen, we need to work much
more on usability. We need to create tools with scalable automation
and smooth workflow integration, and continually improve them in
response to feedback from user studies.

scalable automation Proof repair still struggles with repair
over large libraries when many changes occur at once. The tools of the
future should feature scalable automation that supports this elegantly,
all while imposing little effort on the proof engineer. They should also
be simple to extend with new optimizations, all while preserving cor-
rectness. One promising path toward this is integrating the Pumpkin

Pi transformation with e-graphs (Section 5.1.5), as e-graphs were built
with these kinds of problems in mind. E-graphs were recently adapted
to express path equality in cubical type theory [65]—a perfect fit for
the Pumpkin Pi transformation. E-graphs in other proof assistants,
like those in Lean [145], may help with similar automation for repair
tools for other proof assistants.

6.2 the next era : proof engineering for all 123

smooth integration A natural place for proof repair integration
is at the level of an IDE or CI system. The tools of the future should
integrate smoothly with IDEs like Proof General [2], and with CI
systems like Travis [3]. CI support hinges on the ability to break large
changes into smaller pieces—an outstanding challenge. At the level
of the IDE, perhaps recording changes during development using
the infrastructure from REPLicaREPLicaREPLica will help circumvent this problem.
Program repair tools with IDE integration like CatchUp! [75] can serve
as inspiration for both infrastructure and user experience.

user feedback Proof repair tools should continually adapt to
feedback from the proof engineers who use them. This means user
studies not just of proof engineers using proof assistants (as with
REPLicaREPLicaREPLica), but also of proof engineers using the proof repair tools
themselves. The same principle applies to other proof engineering
tools. Of particular use would be a large user study, enough to run
statistically significant quantitative analyses and gather useful data
for machine learning tools. Reaching enough users for this was one of
the major challenges of REPLicaREPLicaREPLica. Setting fewer barriers to registration
and improving user study incentives may help address this.

Proof Engineering for Software Engineers

In the future, I want any software engineer to be able to develop
and maintain verified software systems. But I do not believe that it
will always be economically feasible or even desirable for software
engineers to formally verify the entire system this way. Instead, I
believe that the future of proof engineering lies in mixed methods
verification: verification using multiple techniques while guaranteeing
that their composition preserves correctness. I advocated for this QED
at Large, and I implemented one case of this at Galois: using Pumpkin

Patch to help a proof engineer interoperate between a constraint
solver and Coq. The proof engineering tools of the future should
integrate with tools familiar to software engineers, assist software
engineers in redesigning software systems for verification, and help
software engineers ensure those systems are robust to change.

familiar tools Software engineers famously resist new tools.
Proof engineering tools should integrate naturally with tools already
familiar to software engineers. They should, for example, lift pro-
grams from familiar languages to proof assistants in a verified manner.
They should help software engineers interactively generalize tests to
specifications for writing proofs, or infer specifications from analyses
of programs. They should check those specifications for correctness—
perhaps using property-based testing tools like QuickChick [127, 95]—
and integrate with debuggers to help software engineers fix incorrect

124 conclusions & future work

programs or specifications. They should prove as much as possible
automatically, then prompt the software engineer with only the rel-
evant questions needed to finish off the proofs. And they should
integrate with proof repair tools to automatically adapt those proofs
in response to changes. The experience of the future ought to exist
along a continuum from testing to formal verification.

tool-assisted redesign Proof engineering often hinges on re-
designing a system to be more amenable to verification.2 The tools
of the future should help software engineers with this. They should,
for example, automatically identify relevant proof design principles
(Section 5.1.2). They should help guide proof engineers through the
process of redesigning software systems to use those principles, au-
tomating the manual effort by way of proof refactoring and repair.
They should do all of this in a way that is trustworthy and transpar-
ent, perhaps even teaching the software engineer about proof design
principles in the process.

tool-assisted robustness Proof engineering tools should help
software engineers build verified systems that are robust to change.
They should, for example, infer more general specifications from
changes to programs and specifications over time—perhaps leveraging
some of the differencing algorithms and proof term transformations
from this thesis. They should record breaking changes, and use those
to suggest improvements to programs and specifications to prevent
future breaking changes. They should integrate with refactoring and
repair tools to automate those improvements to the extent possible,
preserving guarantees and maintaining trust.

Proof Engineering for New Domains

In the future, I want domain experts from a broad spectrum of critical
domains to be able to prove the properties about their software systems
that matter to them—without any proof engineering expertise. I
believe the best path to this future will build on mixed methods
verification, but with a catch: the tools that are familiar to domain
experts will vary by domain, as will the desired user experience.
Accounting for this in proof engineering tools will mean partnering
with domain experts directly, building new abstractions for critical
domains like machine learning, cryptography, and medicine.

machine learning There has been only very preliminary veri-
fication of machine learning tools using proof assistants so far. This
is a loss—proof engineering tools for machine learning experts could
perhaps bring strong safety, fairness, and robustness guarantees to

2 A fun conversation with James Wilcox inspired this whole paragraph.

6.2 the next era : proof engineering for all 125

complex systems like autonomous vehicles or robots, or even to the
social media, search, and advertising algorithms that many of us in-
teract with on a daily basis. These tools could perhaps also help us
build more reliable, understandable, and explainable neural networks.
Current methods for verifying neural networks are not sufficient for
this: automated checking of guarantees is slow for some properties,
and fails on large neural networks.3 One possible path to formally
verifiable neural networks is to interactively factor neural networks
into symbolic and neural parts. The former can hopefully be verified,
with the latter capturing functionality that cannot easily be specified.

cryptography Proof engineering tools for cryptography already
help ensure that cryptographic systems are not just designed, but
also implemented correctly. But cryptography is constantly evolving,
and proof engineering for cryptography is not keeping up. The tools
of the future should keep up with the a variety of cryptographic
technologies as they evolve—everything from quantum and post-
quantum cryptography to emerging cryptographic proof systems to
lattice-based cryptography.4

medicine Medical devices are a natural domain for proof engi-
neering, since strong guarantees about medical devices can save lives.
Proof engineering tools for medical experts should bring strong guar-
antees to the medical devices of tomorrow. This should empower
medical experts to build safer and more reliable medical devices, like
pacemakers, insulin pumps, hearing aides, surgical robots, medication
pumps, artificial organs, genetic arrays, neuromodulation implants,
and genetic sequencing hardware and software.5

Proof Engineering for All

All of these new proof engineering technologies can drive the world
of the future—the world of proof engineering for all. I believe that
this will be a world of much more secure, reliable, and robust systems.
Please work with me to make this world a reality!

3 This whole paragraph—but especially this sentence—is based on a really fun conver-
sation with Matthew Dwyer at Virginia this past spring.

4 My Twitter followers helped me learn about some of the ongoing trends in cryptogra-
phy and—unfortunately—also cryptocurrencies.

5 Most of these suggestions came from many of my wonderful Twitter followers. One
also came from Matthew Dwyer at Virginia, and one came from Matt Might. All
who contributed are acknowledged.

https://twitter.com/TaliaRinger/status/1391943048465055750
https://twitter.com/TaliaRinger/status/1388282607926857731

I N D E X

Acknowledgments
Coauthors

Alex Sanchez-Stern, xii,
7, 8, 24

Ilya Sergey, 7

John Leo, 7

Karl Palmskog, 7, 8, 106,
114

Milos Gligoric, 7

Nathaniel Yazdani, xii, 7,
8, 18, 64, 89, 91, 96, 97,
101, 102, 120

RanDair Porter, xii, 7, 8,
19, 22, 93, 95, 96, 122

Sorin Lerner, 7

Companies
Amazon, x
Carr Astronautics, x
Google, ix

Coq Community, xiii, xiv
Ben Delaware, xiii
Cyril Cohen, xiii
Emilio J. Gallego Arias,

xiii
Enrico Tassi, xiii
Gaëtan Gilbert, xiii
Janno, xiii
Jason Gross, xiii
Matthieu Sozeau, xiii
Maxime Dénès, xiii
Nicolas Tabareau, xiii
Pierre-Marie Pédrot, xiii
Robert Rand, xiii
Tej Chajed, xiii
Théo Zimmermann, xiii
Valentin Robert, xiii, 64

Vincent Laporte, xiii
Yves Bertot, xiii

Family
Belle, xiv

David Lasky, xiii
Grandpa, xiv
Lymor, ix
Mom & Dad, xiv
Saba, xiv
Savta, xiv

Friends, xiii
Anna Kornfeld Simpson,

xiii
Anne Spencer Ross, xiii
Chris Maines, xiii
Danielle Antosh, xiii
Dhruv Jain, xiii
Ellie Berry, xiii
Erica Iantuono, xiii
Esther Jang, xiii
Ezgi Akgül, xiii
Grace Uchida, xiii
Jasper Tran O’Leary, xiii
Karl Koscher, xiii
Laura Chick, xiii
Marcela Mendoza, xiii
Melanie Walker, xiii
Mer Joyce, xiii
Misha Kolmogorov, xiii
Qi Cheng, xiii
Roy Or-El, xiii
Vikram Iyer, xiii
Wade Gordon, xiii

Jewish Community
Chabad of Queen Anne,

xiii
Mentors & Advisors

Brandi K. Adams, ix
Dan Grossman, x–xii, 7

Daniel Schwartz-Narbonne,
x

Derek Dreyer, xiv
Ernesto Gonzalez, x
Franzi Roesner, xi

127

128 Index

Ida Chan, ix
Jeff Foster, x
Kasso Okoudjou, ix
Kris Micinski, x
Larry Washington, ix
Musachy Barroso, x
Ras Bodik, xii
Serdar Tasiran, x
Zach Tatlock, xii, 7

PL Community, xiii, xiv
Alexandra Silva, xiii
Anders Mörtberg, xiii, 75,

97, 100

Bas Spitters, xiii
Bob Harper, xiii
Carlo Angiuli, xiii, 75

Conor McBride, xiii
David van Horn, xiii
Edward Z. Yang, xiii, 44

Emery Berger, xiii
Emily First, 122

Gerwin Klein, xiii
James Decker, xiii
Jon Sterling, xiii
Jonathan Aldrich, xiii
Kenny Foner, xiii
Lindsey Kuper, xiii
Matt Might, xiii, 125

Matthew Dwyer, xiii, 125

Michael Hicks, xiii
Michael Shulman, xiii, 75

Nate Foster, xiii
Stephanie Weirich, xiii
Yuriy Brun, 122

Running Community
Club Northwest, xiii
Race Condition Running,

xiii
Tom Cotner, xiii

Students
Jasper Hugunin, xii, 64

Taylor Blau, xii
Twitter Community, xiv

Amarin Phaosawasdi, xiv
Benjamin Lipp, xiv
Daniel-Nikpayuk, xiv

Dionna Glaze, xiv
Hillel Wayne, xiv
Jana Dunfield, xiv
Michelle Lee, xiv
Nathanael, xiv
PL Twitter, xiv
Quinn Wilton, xiv
Rebecca Turner, xiv
Ymir Vigfusson, xiv

UCSD ProgSys, xiii
UW PLSE, xi–xiii

Adrian Sampson, xii
Alex Polozov, xii
Amanda Swearngin, xii
Ben Kushigian, xii
Bill Zorn, xii
Chandrakana Nandi, xii
Chenglong Wang, xii
Doug Woos, xii
Gus Smith, xii
Jacob Van Geffen, xii
James Wilcox, xii, 124

Jared Roesch, xii
Joe Redmond, xii
John Toman, xii
Konstantin Weitz, xii
Krzysztof Drewniak, xii
Marisa Kirisame, xii
Martin Kellog, xii
Max Willsey, xii
Melissa Hovik, xii
Rashmi Mudduluru, xii
Remy Wang, xii
Sam Elliott, xii
Sarah Chasins, xii
Sorawee Porncharoenwase,

xii
Steven Lyubomirsky, xii
Stuart Pernsteiner, xii

Logic & Type Theory, 6

Algebraic Ornaments, 79,
80, 84, 89, 98, 101, 110

Coherence, 79, 80, 84

Indexer, 79, 84

Ornamental Promotion Iso-
morphism, 80, 102

Index 129

Classical Logic, 106, 121

Common Axioms
DNE, 106

LEM, 105, 106

UIP, 106, 112, 121

Univalence, 67, 69, 75, 106,
111, 112, 121

Dependent Types, 20, 76,
79, 87, 98

Equality
Definitional, 19, 38, 41,

56, 61, 72, 73, 76, 110,
120

Intensionality, 19, 72, 105

Propositional, 19, 21, 42,
67, 72, 73, 106, 111

Transport, 69, 70, 72, 85,
92, 111, 113

Type Equivalences, 64, 66–
70, 79, 85, 106, 111

External, 69, 101, 111

Inductive Types, 16, 20, 39,
71, 79, 110

Constructors, 16, 17, 20,
74, 77, 110

Eliminators, 16, 17, 21, 37,
69, 70, 74, 77, 98, 104,
111, 120

Inductive Hypothesis, 17,
38, 40, 77, 82

Motive, 17, 35, 37, 40, 81,
95

Initial Algebra, 74, 75

Internal, 69, 101, 111

Intuitionistic Logic, 105, 106,
113, 114

Polymorphism, 20, 87

Primitive Eliminators, 18, 20,
21, 30, 39, 55, 71, 89, 90

Sigma Types, 21, 67, 71, 83,
89, 98

Type Theories
Calculus of Constructions,

19, 20

Calculus of Inductive Con-
structions, 16, 19, 27,

37, 69, 71, 75, 90, 93,
105, 111, 113

Cubical Type Theory, 106,
122

Homotopy Type Theory,
67, 69, 75, 111

Previously Published Material
REPLica, 6–8, 24, 61, 97, 99,

108, 115, 117, 120, 123

Adapting Proof Automation
to Adapt Proofs, 6, 7

Ornaments for Proof Reuse
in Coq, 6, 7

Proof Repair across Type
Equivalences, 6, 7

QED at Large, 6–9, 11, 13,
18, 62, 105, 106, 111, 114,
123

Proof Repair, 2, 4, 9, 22, 26, 29,
61, 108, 119

Across Type Equivalences,
4, 5, 28, 61, 119

Automatic Configuration,
62, 64, 66, 68, 70, 72, 78,
89

Configuration, 61, 70, 74

Dependent Constructors,
71, 84, 87

Dependent Eliminators, 71,
84, 87

Eta, 71, 73, 84, 87, 110

Iota, 71, 73, 84, 87, 110,
111

Manual Configuration, 61,
64, 66, 68, 70, 89

Unification Heuristics, 87,
98, 100, 121

By Example, 4, 5, 28, 29,
115, 119

Exampled Patched Proof,
29, 31, 35

Factoring, 36, 43, 46, 47,
57, 59

Generalization, 36, 41, 46,
52, 57, 59, 110

130 Index

Goal Type, 32, 35–37, 55,
59

Inversion, 36, 43, 46, 47,
51, 55, 57, 59

Patch Candidate, 31, 32,
35, 36, 40, 55, 57, 59

Reusable Patch, 29, 31, 32,
35–37, 40, 55, 57, 59

Search Procedure Instance,
34–36, 45, 50

Specialization, 36, 40, 41,
46, 57

Results, 4, 28

Case Studies, 5, 28, 29, 53,
97, 119

Design, 4, 5, 28

Proof Term Transforma-
tions, 4, 5, 21, 26, 27, 29,
31, 32, 35, 36, 40, 46, 55,
57, 64, 70, 85, 90, 110,
119, 124

Semantic Differencing, 4,
5, 21, 26, 27, 29, 31, 32,
34–37, 45, 50, 55, 57, 59,
64, 68, 70, 89, 110, 111,
115, 116, 119, 124

Implementation, 4, 5, 28

Pumpkin Prototype, 29,
44, 61, 64, 88

Pumpkin Patch Plugin
Suite, 5, 29, 44, 61, 88,
119

Pumpkin Pi, 61, 88

Thesis Statement
Formal, 3, 26, 31, 59, 64, 104

Informal, 1, 2, 59, 104, 119

Verification, 1, 2, 9, 22, 105, 121

Continuous Integration, 117,
123

Coq Commands, 31, 65, 88

Coq Plugins, 5, 24, 28, 29,
48, 61, 88

de Bruijn Criterion, 105, 106

Integrated Development En-
vironment, 109, 123

Kernel, 2, 4, 11, 14, 16, 105–
107

Mixed Methods Verification,
123, 124

Proof Assistants, 2, 3, 6, 9,
10, 105

Agda, 2, 105–107, 109, 121

Coq, 2, 3, 6, 10, 15, 105,
106, 113, 121

Cubical Agda, 106, 112

HOL Light, 2, 105, 106

HOL4, 2, 105, 106

Isabelle/HOL, 2, 105–107,
110, 112, 115, 121

Lean, 2, 105, 106, 112, 121,
122

NuPRL, 2, 105

RedPRL, 106

Proof Automation, 22, 26,
29, 32, 107, 108

Proof Development, 10

Program, 2, 9–11, 22

Proof, 2, 9, 10, 13, 22

Specification, 2, 10, 12, 22

Proof Engineering, 2, 6, 9,
48, 62, 105

Proof Maintenance, 22

Proof Object, 106

Ephemeral, 106, 121

Explicit, 106

Proof Script, 3, 10, 14, 15,
64, 111

Ltac, 11, 13, 15, 22, 27, 92,
105, 107

Tactics, 3, 10, 13, 22, 27,
31, 92, 105, 107, 108

Proof Term, 3, 11, 14–16, 27,
64, 92

Gallina, 10–13, 15, 16, 22,
26, 27, 37, 64, 92, 105,
106, 109, 120

Trusted Computing Base, 5,
32, 45, 48, 65, 69, 88, 92

B I B L I O G R A P H Y

[1] Coq reference manual, programmable proof search,
1999-2020. URL: https://coq.inria.fr/refman/proofs/
automatic-tactics/auto.html.

[2] Proof General, 2021. URL: http://proofgeneral.github.io/.

[3] Travis CI, 2021. URL: http://travis-ci.org/.

[4] User A. Software Foundations solution, 2017. URL: http://
github.com/blindFS/Software-Foundations-Solutions.

[5] Mark Adams. Refactoring proofs with Tactician. In Domenico
Bianculli, Radu Calinescu, and Bernhard Rumpe, editors,
Software Engineering and Formal Methods, pages 53–67, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/
978-3-662-49224-6_6.

[6] Agda Development Team. Cubical type theory in Agda,
2005-2021. URL: http://agda.readthedocs.io/en/latest/
language/cubical.html.

[7] Agda Development Team. The Agda wiki, 2007-2021. URL:
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[8] Jesper Andersen and Julia L Lawall. Generic patch inference.
Automated software engineering, 17(2):119–148, 2010.

[9] Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner.
Internalizing representation independence with univalence. Proc.
ACM Program. Lang., 5(POPL), January 2021. URL: https://doi.
org/10.1145/3434293, doi:10.1145/3434293.

[10] Carlo Angiuli, Robert Harper, and Todd Wilson. Computational
higher-dimensional type theory. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, page 680–693, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. URL: https://doi.org/10.
1145/3009837.3009861, doi:10.1145/3009837.3009861.

[11] Serge Autexier, Dieter Hutter, and Till Mossakowski. Verification,
induction termination analysis. chapter Change Management
for Heterogeneous Development Graphs, pages 54–80. Springer-
Verlag, Berlin, Heidelberg, 2010. URL: http://dl.acm.org/
citation.cfm?id=1986659.1986663.

131

https://coq.inria.fr/refman/proofs/automatic-tactics/auto.html
https://coq.inria.fr/refman/proofs/automatic-tactics/auto.html
http://proofgeneral.github.io/
http://travis-ci.org/
http://github.com/blindFS/Software-Foundations-Solutions
http://github.com/blindFS/Software-Foundations-Solutions
http://dx.doi.org/10.1007/978-3-662-49224-6_6
http://dx.doi.org/10.1007/978-3-662-49224-6_6
http://agda.readthedocs.io/en/latest/language/cubical.html
http://agda.readthedocs.io/en/latest/language/cubical.html
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
http://dx.doi.org/10.1145/3434293
https://doi.org/10.1145/3009837.3009861
https://doi.org/10.1145/3009837.3009861
http://dx.doi.org/10.1145/3009837.3009861
http://dl.acm.org/citation.cfm?id=1986659.1986663
http://dl.acm.org/citation.cfm?id=1986659.1986663

132 Bibliography

[12] Serge Autexier and Normen Müller. Semantics-based change
impact analysis for heterogeneous collections of documents. In
Proceedings of the 10th ACM Symposium on Document Engineering,
DocEng ’10, pages 97–106, New York, NY, USA, 2010. ACM.
URL: http://doi.acm.org/10.1145/1860559.1860580, doi:10.
1145/1860559.1860580.

[13] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy
Pollack, and Stephanie Weirich. Engineering formal metatheory.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’08, pages
3–15, New York, NY, USA, 2008. ACM. doi:10.1145/1328438.
1328443.

[14] User B. Software Foundations solution, 2017. URL: http://
github.com/marshall-lee/software_foundations.

[15] Henk Barendregt. Foundations of Mathematics from the Perspec-
tive of Computer Verification, pages 1–49. Springer International
Publishing, Cham, 2013. doi:10.1007/978-3-319-00966-7_1.

[16] Henk Barendregt and Erik Barendsen. Autarkic computations
in formal proofs. Journal of Automated Reasoning, 28(3):321–336,
2002. doi:10.1023/A:1015761529444.

[17] Henk Barendregt and Freek Wiedijk. The challenge of com-
puter mathematics. Philosophical Transactions of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering Sciences,
363(1835):2351–2375, 2005. doi:10.1098/rsta.2005.1650.

[18] Bruno Barras, Lourdes del Carmen González Huesca, Hugo
Herbelin, Yann Régis-Gianas, Enrico Tassi, Makarius Wenzel,
and Burkhart Wolff. Pervasive parallelism in highly-trustable
interactive theorem proving systems. In Intelligent Computer
Mathematics: MKM, Calculemus, DML, and Systems and Projects
2013, Held as Part of CICM 2013, Bath, UK, July 8-12, 2013.
Proceedings, pages 359–363, Berlin, Heidelberg, 2013. Springer.
doi:10.1007/978-3-642-39320-4_29.

[19] Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous
processing of Coq documents: From the kernel up to the user
interface. In Interactive Theorem Proving: 6th International Confer-
ence, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings,
pages 51–66, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-22102-1_4.

[20] Gilles Barthe and Olivier Pons. Type isomorphisms and proof
reuse in dependent type theory. In Proceedings of the 4th Interna-
tional Conference on Foundations of Software Science and Computa-
tion Structures, FoSSaCS ’01, pages 57–71, London, UK, UK, 2001.

http://doi.acm.org/10.1145/1860559.1860580
http://dx.doi.org/10.1145/1860559.1860580
http://dx.doi.org/10.1145/1860559.1860580
http://dx.doi.org/10.1145/1328438.1328443
http://dx.doi.org/10.1145/1328438.1328443
http://github.com/marshall-lee/software_foundations
http://github.com/marshall-lee/software_foundations
http://dx.doi.org/10.1007/978-3-319-00966-7_1
http://dx.doi.org/10.1023/A:1015761529444
http://dx.doi.org/10.1098/rsta.2005.1650
http://dx.doi.org/10.1007/978-3-642-39320-4_29
http://dx.doi.org/10.1007/978-3-319-22102-1_4

Bibliography 133

Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
646793.704711.

[21] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich,
and Christoph Weidenbach. A verified SAT solver frame-
work with learn, forget, restart, and incrementality. Journal
of Automated Reasoning, 61(1):333–365, Jun 2018. doi:10.1007/
s10817-018-9455-7.

[22] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk,
Daniel Kühlwein, and Josef Urban. A learning-based fact selector
for Isabelle/HOL. Journal of Automated Reasoning, 57(3):219–244,
Oct 2016. doi:10.1007/s10817-016-9362-8.

[23] Olivier Boite. Proof reuse with extended inductive types. In
Theorem Proving in Higher Order Logics: 17th International Con-
ference, TPHOLs 2004, Park City, Utah, USA, September 14-17,
2004. Proceedings, pages 50–65, Berlin, Heidelberg, 2004. Springer.
doi:10.1007/978-3-540-30142-4_4.

[24] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal
Kolanski. Challenges and experiences in managing large-scale
proofs. In Intelligent Computer Mathematics, pages 32–48, Berlin,
Heidelberg, 2012. Springer. doi:10.1007/978-3-642-31374-5_
3.

[25] Pierre Boutillier. New tool to compute with inductive in Coq. Theses,
Université Paris-Diderot - Paris VII, February 2014. URL: https:
//tel.archives-ouvertes.fr/tel-01054723.

[26] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus
Ostermann. A theory of changes for higher-order languages:
Incrementalizing λ-calculi by static differentiation. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 145–155, New York,
NY, USA, 2014. ACM. URL: http://doi.acm.org/10.1145/
2594291.2594304, doi:10.1145/2594291.2594304.

[27] Ahmet Celik, Karl Palmskog, and Milos Gligoric. iCoq: Re-
gression proof selection for large-scale verification projects. In
Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pages 171–182, Piscataway,
NJ, USA, 2017. IEEE Press. URL: http://dl.acm.org/citation.
cfm?id=3155562.3155588.

[28] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai
Zeldovich. Argosy: Verifying layered storage systems with
recovery refinement. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,

http://dl.acm.org/citation.cfm?id=646793.704711
http://dl.acm.org/citation.cfm?id=646793.704711
http://dx.doi.org/10.1007/s10817-018-9455-7
http://dx.doi.org/10.1007/s10817-018-9455-7
http://dx.doi.org/10.1007/s10817-016-9362-8
http://dx.doi.org/10.1007/978-3-540-30142-4_4
http://dx.doi.org/10.1007/978-3-642-31374-5_3
http://dx.doi.org/10.1007/978-3-642-31374-5_3
https://tel.archives-ouvertes.fr/tel-01054723
https://tel.archives-ouvertes.fr/tel-01054723
http://doi.acm.org/10.1145/2594291.2594304
http://doi.acm.org/10.1145/2594291.2594304
http://dx.doi.org/10.1145/2594291.2594304
http://dl.acm.org/citation.cfm?id=3155562.3155588
http://dl.acm.org/citation.cfm?id=3155562.3155588

134 Bibliography

PLDI 2019, pages 1054–1068, New York, NY, USA, 2019. ACM.
doi:10.1145/3314221.3314585.

[29] Michael Chan, Jos Lehmann, and Alan Bundy. GALILEO: A
system for automating ontology evolution. ARCOE-11, page 46,
2011.

[30] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang,
Atalay İleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. Verifying a high-performance crash-safe file system
using a tree specification. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 270–286, New
York, NY, USA, 2017. ACM. doi:10.1145/3132747.3132776.

[31] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. Using crash Hoare
logic for certifying the FSCQ file system. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages
18–37, New York, NY, USA, 2015. ACM. doi:10.1145/2815400.
2815402.

[32] Adam Chlipala. Certified Programming with Dependent
Types - A Pragmatic Introduction to the Coq Proof Assistant.
MIT Press, 2013. URL: http://mitpress.mit.edu/books/
certified-programming-dependent-types.

[33] Jacek Chrząszcz. Modules in Coq are and will be correct. In
Types for Proofs and Programs, pages 130–146, Berlin, Heidelberg,
2004. Springer. doi:10.1007/978-3-540-24849-1_9.

[34] Jesper Cockx. Dependent Pattern Matching and Proof-Relevant
Unification. PhD thesis, KU Leuven, 2017.

[35] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mört-
berg. Cubical type theory: A constructive interpretation of the
Univalence axiom. In Tarmo Uustalu, editor, 21st International
Conference on Types for Proofs and Programs (TYPES 2015), vol-
ume 69 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:34, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.
2015.5.

[36] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements
for Free! In Certified Programs and Proofs, pages 147 – 162, Mel-
bourne, Australia, December 2013. URL: https://hal.inria.
fr/hal-01113453, doi:10.1007/978-3-319-03545-1_10.

[37] CompCert Development Team. Merge of the
newmem and newextcalls branches, 2010. URL:
http://github.com/AbsInt/CompCert/commit/
a74f6b45d72834b5b8417297017bd81424123d98.

http://dx.doi.org/10.1145/3314221.3314585
http://dx.doi.org/10.1145/3132747.3132776
http://dx.doi.org/10.1145/2815400.2815402
http://dx.doi.org/10.1145/2815400.2815402
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://dx.doi.org/10.1007/978-3-540-24849-1_9
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
https://hal.inria.fr/hal-01113453
https://hal.inria.fr/hal-01113453
http://dx.doi.org/10.1007/978-3-319-03545-1_10
http://github.com/AbsInt/CompCert/commit/a74f6b45d72834b5b8417297017bd81424123d98
http://github.com/AbsInt/CompCert/commit/a74f6b45d72834b5b8417297017bd81424123d98

Bibliography 135

[38] Coq Development Team. The Coq proof assistant, 1989-2021.
URL: http://coq.inria.fr.

[39] Coq Development Team. Tactics, 1999-2021. URL: http://coq.
inria.fr/refman/proof-engine/tactics.html.

[40] Thierry Coquand and Gérard Huet. The calculus of construc-
tions. Technical Report RR-0530, INRIA, May 1986. URL:
https://hal.inria.fr/inria-00076024.

[41] Thierry Coquand and Christine Paulin. Inductively defined
types. In Per Martin-Löf and Grigori Mints, editors, COLOG-88,
pages 50–66, Berlin, Heidelberg, 1990. Springer Berlin Heidel-
berg.

[42] Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automa-
tion for dependent type theory. Journal of Automated Reasoning,
61(1):423–453, June 2018. doi:10.1007/s10817-018-9458-4.

[43] Pierre-Évariste Dagand. The essence of ornaments. Jour-
nal of Functional Programming, 27:e9, 2017. doi:10.1017/
S0956796816000356.

[44] Pierre-Evariste Dagand and Conor McBride. A categorical treat-
ment of ornaments. In Proceedings of the 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’13,
pages 530–539, Washington, DC, USA, 2013. IEEE Computer
Society. doi:10.1109/LICS.2013.60.

[45] Pierre-Evariste Dagand and Conor McBride. Transporting func-
tions across ornaments. Journal of functional programming, 24(2-
3):316–383, 2014.

[46] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov.
ReAssert: Suggesting repairs for broken unit tests. In Automated
Software Engineering, 2009. ASE’09. 24th IEEE/ACM International
Conference on, pages 433–444. IEEE, 2009.

[47] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The Lean theorem prover (sys-
tem description). In Automated Deduction - CADE-25: 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings, pages 378–388, Cham, 2015. Springer In-
ternational Publishing. doi:10.1007/978-3-319-21401-6_26.

[48] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
Meta-theory à la carte. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, pages 207–218, New York, NY, USA, 2013.
ACM. doi:10.1145/2429069.2429094.

http://coq.inria.fr
http://coq.inria.fr/refman/proof-engine/tactics.html
http://coq.inria.fr/refman/proof-engine/tactics.html
https://hal.inria.fr/inria-00076024
http://dx.doi.org/10.1007/s10817-018-9458-4
http://dx.doi.org/10.1017/S0956796816000356
http://dx.doi.org/10.1017/S0956796816000356
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1145/2429069.2429094

136 Bibliography

[49] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and
Bruno C.d.S. Oliveira. Modular monadic meta-theory. In Pro-
ceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 319–330, New York, NY,
USA, 2013. ACM. doi:10.1145/2500365.2500587.

[50] François-Nicola Demers and Jacques Malenfant. Reflection in
logic, functional and object-oriented programming: a short com-
parative study. In In IJCAI ’95 Workshop on Reflection and Metalevel
Architectures and their Applications in AI, pages 29–38, 1995.

[51] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’77, pages 206–214, New York,
NY, USA, 1977. ACM. doi:10.1145/512950.512970.

[52] Louise A Dennis, Raul Monroy, and Pablo Nogueira. Proof-
directed debugging and repair. In Seventh Symposium on Trends
in Functional Programming, volume 2006, pages 131–140. Citeseer,
2006.

[53] Dominik Dietrich, Iain Whiteside, and David Aspinall. Polar: A
framework for proof refactoring. In Logic for Programming, Artifi-
cial Intelligence, and Reasoning, pages 776–791, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-45221-5_52.

[54] Mike Dodds. Proofs should repair themselves,
2020. URL: https://galois.com/blog/2020/12/
proofs-should-repair-themselves/.

[55] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what
have we learnt in 20 years of L4 microkernels? In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 133–150, New York, NY, USA, 2013. ACM.
doi:10.1145/2517349.2522720.

[56] Martin Hötzel Escardó. A self-contained, brief and com-
plete formulation of Voevodsky’s univalence axiom. CoRR,
abs/1803.02294, 2018. arXiv:1803.02294.

[57] Emily First, Yuriy Brun, and Arjun Guha. TacTok: Semantics-
aware proof synthesis. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. URL: https://doi.org/10.1145/3428299,
doi:10.1145/3428299.

[58] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, and Jean Souyris. Towards Formally Verified Optimizing
Compilation in Flight Control Software. In Bringing Theory to

http://dx.doi.org/10.1145/2500365.2500587
http://dx.doi.org/10.1145/512950.512970
http://dx.doi.org/10.1007/978-3-642-45221-5_52
https://galois.com/blog/2020/12/proofs-should-repair-themselves/
https://galois.com/blog/2020/12/proofs-should-repair-themselves/
http://dx.doi.org/10.1145/2517349.2522720
http://arxiv.org/abs/1803.02294
https://doi.org/10.1145/3428299
http://dx.doi.org/10.1145/3428299

Bibliography 137

Practice: Predictability and Performance in Embedded Systems, vol-
ume 18 of OpenAccess Series in Informatics (OASIcs), pages 59–68,
Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/OASIcs.PPES.2011.59.

[59] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang,
and Hong Mei. Fixing recurring crash bugs via analyzing Q&A
sites (t). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 307–318. IEEE, 2015.

[60] Thibault Gauthier and Cezary Kaliszyk. Matching con-
cepts across HOL libraries. In Intelligent Computer Mathe-
matics, pages 267–281, Cham, 2014. Springer. doi:10.1007/
978-3-319-08434-3_20.

[61] Thibault Gauthier and Cezary Kaliszyk. Sharing HOL4 and
HOL Light proof knowledge. In Logic for Programming, Arti-
ficial Intelligence, and Reasoning: 20th International Conference,
LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings,
pages 372–386, Berlin, Heidelberg, 2015. Springer. doi:10.1007/
978-3-662-48899-7_26.

[62] Thibault Gauthier and Cezary Kaliszyk. Aligning concepts
across proof assistant libraries. Journal of Symbolic Computation,
90:89–123, 2019. Symbolic Computation in Software Science.
doi:10.1016/j.jsc.2018.04.005.

[63] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Au-
tomatic software repair: A survey. In Proceedings of the
40th International Conference on Software Engineering, ICSE
’18, pages 1219–1219, New York, NY, USA, 2018. ACM.
URL: http://doi.acm.org/10.1145/3180155.3182526, doi:10.
1145/3180155.3182526.

[64] Eduarde Giménez. Codifying guarded definitions with recur-
sive schemes. In Peter Dybjer, Bengt Nordström, and Jan Smith,
editors, Types for Proofs and Programs, pages 39–59, Berlin, Hei-
delberg, 1995. Springer Berlin Heidelberg.

[65] Emil Holm Gjørup and Bas Spitters. Congruence closure in
cubical type theory. In Workshop on Homotopy Type Theory
/ Univalent Foundations, 2020. URL: https://www.cs.au.dk/
~spitters/Emil.pdf.

[66] Georges Gonthier. Formal proof—the four-color theorem. Notices
of the American Mathematical Society, 55(11):1382–1393, 2008. URL:
http://www.ams.org/notices/200811/tx081101382p.pdf.

[67] Georges Gonthier and Assia Mahboubi. An introduction to
small scale reflection in Coq. Journal of Formalized Reasoning,
3(2):95–152, 2010. doi:10.6092/issn.1972-5787/1979.

http://dx.doi.org/10.4230/OASIcs.PPES.2011.59
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1007/978-3-662-48899-7_26
http://dx.doi.org/10.1007/978-3-662-48899-7_26
http://dx.doi.org/10.1016/j.jsc.2018.04.005
http://doi.acm.org/10.1145/3180155.3182526
http://dx.doi.org/10.1145/3180155.3182526
http://dx.doi.org/10.1145/3180155.3182526
https://www.cs.au.dk/~spitters/Emil.pdf
https://www.cs.au.dk/~spitters/Emil.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://dx.doi.org/10.6092/issn.1972-5787/1979

138 Bibliography

[68] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khur-
shid. Specification-based program repair using SAT. In Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 173–188. Springer, 2011.

[69] Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C.
Newey, and Christopher P. Wadsworth. A metalanguage for
interactive proof in LCF. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages,
POPL ’78, pages 119–130, New York, NY, USA, 1978. ACM.
doi:10.1145/512760.512773.

[70] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu,
Jieung Kim, Vilhelm Sjöberg, and David Costanzo. Certikos: An
extensible architecture for building certified concurrent OS ker-
nels. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 653–669, GA, 2016. USENIX As-
sociation. URL: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/gu.

[71] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Pro-
gram synthesis. Foundations and Trends in Programming Lan-
guages, 4(1-2):1–119, 2017. URL: https://doi.org/10.1561/
2500000010, doi:10.1561/2500000010.

[72] John Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI Cambridge,
Millers Yard, Cambridge, UK, 1995. URL: http://www.cl.cam.
ac.uk/~jrh13/papers/reflect.dvi.gz.

[73] Robert W Hasker and Uday S Reddy. Generalization at higher
types. In Proceedings of the Workshop on the λProlog Programming
Language, pages 257–271, 1992.

[74] Haifeng He and Neelam Gupta. Automated debugging us-
ing path-based weakest preconditions. In Michel Wermelinger
and Tiziana Margaria-Steffen, editors, Fundamental Approaches
to Software Engineering, pages 267–280, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[75] Johannes Henkel and Amer Diwan. CatchUp!: Capturing
and replaying refactorings to support api evolution. In Pro-
ceedings of the 27th International Conference on Software Engi-
neering, ICSE ’05, pages 274–283, New York, NY, USA, 2005.
ACM. URL: http://doi.acm.org/10.1145/1062455.1062512,
doi:10.1145/1062455.1062512.

[76] Arend Heyting. Intuitionism. an introduction. 1956.

http://dx.doi.org/10.1145/512760.512773
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz
http://doi.acm.org/10.1145/1062455.1062512
http://dx.doi.org/10.1145/1062455.1062512

Bibliography 139

[77] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and
Michael Hicks. A verified optimizer for quantum circuits. Pro-
ceedings of the ACM on Programming Languages, 5(POPL):1–29,
2021.

[78] HOL Light Development Team. HOL Light, 1996-2021. URL:
http://www.cl.cam.ac.uk/~jrh13/hol-light.

[79] Brian Huffman and Ondřej Kunčar. Lifting and transfer: A
modular design for quotients in Isabelle/HOL. In Certified
Programs and Proofs: Third International Conference, CPP 2013,
pages 131–146, Cham, 2013. Springer International Publishing.
doi:10.1007/978-3-319-03545-1_9.

[80] D. Hutter. Management of change in structured verification.
In ASE 2000, pages 23–31, Sept 2000. doi:10.1109/ASE.2000.
873647.

[81] Isabelle Development Team. Isabelle, 1994-2021. URL: http:
//isabelle.in.tum.de.

[82] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Establishing
browser security guarantees through formal shim verification.
In Proceedings of the 21st USENIX Conference on Security Sympo-
sium, Security’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX
Association.

[83] Einar Broch Johnsen and Christoph Lüth. Theorem reuse by
proof term transformation. In Theorem Proving in Higher Order
Logics: 17th International Conference, TPHOLs 2004, Park City, Utah,
USA, September 14-17, 2004. Proceedings, pages 152–167. Springer,
Berlin, Heidelberg, 2004. doi:10.1007/978-3-540-30142-4_12.

[84] Cezary Kaliszyk and Josef Urban. Learning-assisted auto-
mated reasoning with Flyspeck. Journal of Automated Reasoning,
53(2):173–213, Aug 2014. doi:10.1007/s10817-014-9303-3.

[85] Daniel Kästner, Xavier Leroy, Sandrine Blazy, Bernhard Schom-
mer, Michael Schmidt, and Christian Ferdinand. Closing
the gap – the formally verified optimizing compiler Com-
pCert. In SSS’17: Safety-critical Systems Symposium 2017, De-
velopments in System Safety Engineering: Proceedings of the
Twenty-fifth Safety-critical Systems Symposium, pages 163–180,
Bristol, United Kingdom, February 2017. CreateSpace. URL:
https://hal.inria.fr/hal-01399482.

[86] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun.
Repairing programs with semantic code search (t). In Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE ’15, pages 295–306, Washington,

http://www.cl.cam.ac.uk/~jrh13/hol-light
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1109/ASE.2000.873647
http://dx.doi.org/10.1109/ASE.2000.873647
http://isabelle.in.tum.de
http://isabelle.in.tum.de
http://dx.doi.org/10.1007/978-3-540-30142-4_12
http://dx.doi.org/10.1007/s10817-014-9303-3
https://hal.inria.fr/hal-01399482

140 Bibliography

DC, USA, 2015. IEEE Computer Society. URL: https://doi.
org/10.1109/ASE.2015.60, doi:10.1109/ASE.2015.60.

[87] Gerwin Klein. Proof engineering considered essential. In FM
2014: Formal Methods: 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings, pages 16–21, Cham, 2014. Springer
International Publishing. doi:10.1007/978-3-319-06410-9_2.

[88] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Comprehen-
sive formal verification of an OS microkernel. ACM Trans. Com-
put. Syst., 32(1):2:1–2:70, February 2014. doi:10.1145/2560537.

[89] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-
ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification of an OS
kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, pages 207–220, New York,
NY, USA, 2009. ACM. doi:10.1145/1629575.1629596.

[90] Hsiang-Shang Ko and Jeremy Gibbons. Relational algebraic
ornaments. In Proceedings of the 2013 ACM SIGPLAN workshop
on Dependently-typed programming, pages 37–48. ACM, 2013.

[91] Hsiang-Shang Ko and Jeremy Gibbons. Programming with
ornaments. Journal of Functional Programming, 27, 2016.

[92] Thomas Kolbe and Christoph Walther. Proof Analysis, Gener-
alization and Reuse, pages 189–219. Springer, Dordrecht, 1998.
doi:10.1007/978-94-017-0435-9_8.

[93] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. CakeML: A verified implementation of ML. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, pages 179–191, New York,
NY, USA, 2014. ACM. doi:10.1145/2535838.2535841.

[94] Shuvendu Lahiri, Kenneth McMillan, Rahul Sharma, and
Chris Hawblitzel. Differential assertion checking. In
Foundations of Software Engineering (FSE’13). ACM, August
2013. URL: https://www.microsoft.com/en-us/research/
publication/differential-assertion-checking-2/.

[95] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C.
Pierce. Generating good generators for inductive relations. Proc.
ACM Program. Lang., 2(POPL):45:1–45:30, December 2017. doi:
10.1145/3158133.

[96] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and
Westley Weimer. A systematic study of automated program

https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ASE.2015.60
http://dx.doi.org/10.1109/ASE.2015.60
http://dx.doi.org/10.1007/978-3-319-06410-9_2
http://dx.doi.org/10.1145/2560537
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1007/978-94-017-0435-9_8
http://dx.doi.org/10.1145/2535838.2535841
https://www.microsoft.com/en-us/research/publication/differential-assertion-checking-2/
https://www.microsoft.com/en-us/research/publication/differential-assertion-checking-2/
http://dx.doi.org/10.1145/3158133
http://dx.doi.org/10.1145/3158133

Bibliography 141

repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings
of the 34th International Conference on Software Engineering, ICSE
’12, pages 3–13, Piscataway, NJ, USA, 2012. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2337223.2337225.

[97] Lean Development Team. Theorem proving in Lean, 2014-2021.
URL: http://leanprover.github.io/tutorial/.

[98] Xavier Leroy. Formal certification of a compiler back-end or:
Programming a compiler with a proof assistant. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’06, pages 42–54, New
York, NY, USA, 2006. ACM. doi:10.1145/1111037.1111042.

[99] Xavier Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, July 2009. doi:10.1145/1538788.1538814.

[100] Xavier Leroy. Commit to CompCert: lib/integers.v,
2013. URL: http://github.com/AbsInt/CompCert/commit/
6f3225b0623b9c97eed7d40ddc320b08c79c6518.

[101] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon
Stewart. The CompCert Memory Model, Version 2. Research
Report RR-7987, INRIA, June 2012. URL: https://hal.inria.
fr/hal-00703441.

[102] letouzey. Commit to Coq: change definition of divide (compat
with Znumtheory), 2011. URL: http://github.com/coq/coq/
commit/81c4c8bc418cdf42cc88249952dbba465068202c.

[103] Fan Long and Martin Rinard. Automatic patch generation by
learning correct code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’16, pages 298–312, New York, NY, USA, 2016.
ACM. URL: http://doi.acm.org/10.1145/2837614.2837617,
doi:10.1145/2837614.2837617.

[104] Nicolas Magaud. Changing data representation within the Coq
system. In International Conference on Theorem Proving in Higher
Order Logics, pages 87–102. Springer, 2003.

[105] Nicolas Magaud and Yves Bertot. Changing data structures in
type theory: A study of natural numbers. In International Work-
shop on Types for Proofs and Programs, pages 181–196. Springer,
2000.

[106] Matias Martinez, Thomas Durieux, Romain Sommerard,
Jifeng Xuan, and Martin Monperrus. Automatic Re-
pair of Real Bugs in Java: A Large-Scale Experiment
on the Defects4J Dataset. Empirical Software Engineering,

http://dl.acm.org/citation.cfm?id=2337223.2337225
http://leanprover.github.io/tutorial/
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1145/1538788.1538814
http://github.com/AbsInt/CompCert/commit/6f3225b0623b9c97eed7d40ddc320b08c79c6518
http://github.com/AbsInt/CompCert/commit/6f3225b0623b9c97eed7d40ddc320b08c79c6518
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441
http://github.com/coq/coq/commit/81c4c8bc418cdf42cc88249952dbba465068202c
http://github.com/coq/coq/commit/81c4c8bc418cdf42cc88249952dbba465068202c
http://doi.acm.org/10.1145/2837614.2837617
http://dx.doi.org/10.1145/2837614.2837617

142 Bibliography

22(4):1936–1964, 2017. URL: https://hal.archives-ouvertes.
fr/hal-01387556, doi:10.1007/s10664-016-9470-4.

[107] Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eis-
bach: A proof method language for Isabelle. Journal of Au-
tomated Reasoning, 56(3):261–282, Mar 2016. doi:10.1007/
s10817-015-9360-2.

[108] Conor McBride. Ornamental algebras, algebraic orna-
ments, 2011. URL: http://plv.mpi-sws.org/plerg/papers/
mcbride-ornaments-2up.pdf.

[109] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Direct-
fix: Looking for simple program repairs. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE
’15, pages 448–458, Piscataway, NJ, USA, 2015. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2818754.2818811.

[110] Guillaume Melquiond. Commit to Coq: Make IZR use a compact
representation of integers, 2017. URL: http://github.com/coq/
coq/commit/a4a76c253474ac4ce523b70d0150ea5dcf546385.

[111] Na Meng, Miryung Kim, and Kathryn S McKinley. Systematic
editing: generating program transformations from an example.
ACM SIGPLAN Notices, 46(6):329–342, 2011.

[112] Na Meng, Miryung Kim, and Kathryn S McKinley. Lase: locat-
ing and applying systematic edits by learning from examples.
In Proceedings of the 2013 International Conference on Software Engi-
neering, pages 502–511. IEEE Press, 2013.

[113] Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter
Swierstra. Type-directed diffing of structured data. In Proceedings
of the 2Nd ACM SIGPLAN International Workshop on Type-Driven
Development, TyDe 2017, pages 2–15, New York, NY, USA, 2017.
ACM. URL: http://doi.acm.org/10.1145/3122975.3122976,
doi:10.1145/3122975.3122976.

[114] Martin Monperrus. Automatic software repair: A bibliography.
ACM Comput. Surv., 51(1):17:1–17:24, January 2018. URL: http:
//doi.acm.org/10.1145/3105906, doi:10.1145/3105906.

[115] Anne Mulhern. Proof weaving. In In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metatheory,
2006.

[116] Toby Murray and P. C. van Oorschot. BP: Formal proofs, the fine
print and side effects. In IEEE Cybersecurity Development (SecDev),
pages 1–10, Sep. 2018. doi:10.1109/SecDev.2018.00009.

https://hal.archives-ouvertes.fr/hal-01387556
https://hal.archives-ouvertes.fr/hal-01387556
http://dx.doi.org/10.1007/s10664-016-9470-4
http://dx.doi.org/10.1007/s10817-015-9360-2
http://dx.doi.org/10.1007/s10817-015-9360-2
http://plv.mpi-sws.org/plerg/papers/mcbride-ornaments-2up.pdf
http://plv.mpi-sws.org/plerg/papers/mcbride-ornaments-2up.pdf
http://dl.acm.org/citation.cfm?id=2818754.2818811
http://github.com/coq/coq/commit/a4a76c253474ac4ce523b70d0150ea5dcf546385
http://github.com/coq/coq/commit/a4a76c253474ac4ce523b70d0150ea5dcf546385
http://doi.acm.org/10.1145/3122975.3122976
http://dx.doi.org/10.1145/3122975.3122976
http://doi.acm.org/10.1145/3105906
http://doi.acm.org/10.1145/3105906
http://dx.doi.org/10.1145/3105906
http://dx.doi.org/10.1109/SecDev.2018.00009

Bibliography 143

[117] Magnus O. Myreen. Guide to HOL4 interaction and basic
proofs, 2008-2021. URL: http://hol-theorem-prover.org/
HOL-interaction.pdf.

[118] Charles Gregory Nelson. Techniques for Program Verification. PhD
thesis, Stanford, CA, USA, 1980. AAI8011683.

[119] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury,
and Satish Chandra. Semfix: Program repair via semantic anal-
ysis. In Software Engineering (ICSE), 2013 35th International Con-
ference on, pages 772–781. IEEE, 2013.

[120] nLab authors. beta-reduction. http://ncatlab.org/nlab/show/
beta-reduction, July 2020. Revision 6.

[121] nLab authors. eta-conversion. http://ncatlab.org/nlab/show/
eta-conversion, July 2020. Revision 12.

[122] nLab authors. initial algebra of an endofunctor.
http://ncatlab.org/nlab/show/initial%20algebra%20of%
20an%20endofunctor, May 2021. Revision 28.

[123] NuPRL Development Team. Nuprl, 1986-2021. URL: http:
//www.nuprl.org/.

[124] William F Opdyke. Refactoring: A program restructuring aid in
designing object-oriented application frameworks. PhD thesis, 1992.

[125] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles
Muller. Documenting and automating collateral evolutions in
linux device drivers. In ACM SIGOPS operating systems review,
volume 42, pages 247–260. ACM, 2008.

[126] Karl Palmskog, Ahmet Celik, and Milos Gligoric. piCoq: Parallel
regression proving for large-scale verification projects. In ISSTA,
pages 344–355, New York, NY, USA, 2018. ACM. doi:10.1145/
3213846.3213877.

[127] Zoe Paraskevopoulou, Cătălin Hritçu, Maxime Dénès, Leonidas
Lampropoulos, and Benjamin C. Pierce. Foundational property-
based testing. In Interactive Theorem Proving: 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Pro-
ceedings, pages 325–343, Cham, 2015. Springer International
Publishing. doi:10.1007/978-3-319-22102-1_22.

[128] Lawrence C. Paulson and Jasmin Christian Blanchette. Three
years of experience with Sledgehammer, a practical link be-
tween automatic and interactive theorem provers. In G. Sutcliffe,
S. Schulz, and E. Ternovska, editors, International Workshop on
the Implementation of Logics (IWIL 2010), volume 2 of EPiC Series,
pages 1–11. EasyChair, 2012.

http://hol-theorem-prover.org/HOL-interaction.pdf
http://hol-theorem-prover.org/HOL-interaction.pdf
http://ncatlab.org/nlab/show/beta-reduction
http://ncatlab.org/nlab/show/beta-reduction
http://ncatlab.org/nlab/revision/beta-reduction/6
http://ncatlab.org/nlab/show/eta-conversion
http://ncatlab.org/nlab/show/eta-conversion
http://ncatlab.org/nlab/revision/eta-conversion/12
http://ncatlab.org/nlab/show/initial%20algebra%20of%20an%20endofunctor
http://ncatlab.org/nlab/show/initial%20algebra%20of%20an%20endofunctor
http://ncatlab.org/nlab/revision/initial%20algebra%20of%20an%20endofunctor/28
http://www.nuprl.org/
http://www.nuprl.org/
http://dx.doi.org/10.1145/3213846.3213877
http://dx.doi.org/10.1145/3213846.3213877
http://dx.doi.org/10.1007/978-3-319-22102-1_22

144 Bibliography

[129] Pierre-Marie Pédrot. Ltac2: Tactical warfare. In CoqPL 2019,
2019.

[130] Yu Pei, Carlo A Furia, Martin Nordio, Yi Wei, Bertrand Meyer,
and Andreas Zeller. Automated fixing of programs with con-
tracts. arXiv preprint arXiv:1403.1117, 2014.

[131] Frank Pfenning. Proof Transformations in Higher-Order Logic. PhD
thesis, Carnegie Mellon University, 1987.

[132] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris
Casinghino, Marco Gaboardi, Michael Greenberg, Catǎlin
Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software
Foundations. Electronic textbook, 2016. Version 4.0.
http://www.cis.upenn.edu/ bcpierce/sf.

[133] Olivier Pons. Conception et réalisation d’outils d’aide au développe-
ment de grosses théories dans les systèmes de preuves interactifs. PhD
thesis, 1999.

[134] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An
analysis of patch plausibility and correctness for generate-
and-validate patch generation systems. In Proceedings of the
2015 International Symposium on Software Testing and Analy-
sis, ISSTA 2015, pages 24–36, New York, NY, USA, 2015.
ACM. URL: http://doi.acm.org/10.1145/2771783.2771791,
doi:10.1145/2771783.2771791.

[135] RedPRL Development Team. The RedPRL proof assistant, 2015-
2021. URL: http://www.redprl.org.

[136] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and
Zachary Tatlock. QED at large: A survey of engineering of for-
mally verified software. Foundations and Trends R© in Programming
Languages, 5(2-3):102–281, 2019. URL: http://dx.doi.org/10.
1561/2500000045, doi:10.1561/2500000045.

[137] Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and
Dan Grossman. Proof repair across type equivalences. In Pro-
ceedings of the 42nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2021, 2021.

[138] Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin
Lerner. REPLica: REPL instrumentation for Coq analysis.
In Proceedings of the 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, CPP 2020, page 99–113,
New York, NY, USA, 2020. Association for Computing Ma-
chinery. URL: https://doi.org/10.1145/3372885.3373823,
doi:10.1145/3372885.3373823.

http://doi.acm.org/10.1145/2771783.2771791
http://dx.doi.org/10.1145/2771783.2771791
http://www.redprl.org
http://dx.doi.org/10.1561/2500000045
http://dx.doi.org/10.1561/2500000045
http://dx.doi.org/10.1561/2500000045
https://doi.org/10.1145/3372885.3373823
http://dx.doi.org/10.1145/3372885.3373823

Bibliography 145

[139] Talia Ringer and Nathaniel Yazdani. Pumpkin-git, 2018. URL:
http://github.com/uwplse/PUMPKIN-git.

[140] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman.
Adapting proof automation to adapt proofs. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, pages 115–129, 2018.

[141] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman.
Ornaments for Proof Reuse in Coq. In John Harrison, John
O’Leary, and Andrew Tolmach, editors, 10th International Con-
ference on Interactive Theorem Proving (ITP 2019), volume 141

of Leibniz International Proceedings in Informatics (LIPIcs), pages
26:1–26:19, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/
opus/volltexte/2019/11081, doi:10.4230/LIPIcs.ITP.2019.
26.

[142] Valentin Robert. Front-end tooling for building and maintaining
dependently-typed functional programs. PhD thesis, UC San Diego,
2018.

[143] Kenneth Roe and Scott Smith. CoqPIE: An IDE aimed at improv-
ing proof development productivity. In Interactive Theorem Prov-
ing: 7th International Conference, ITP 2016, Nancy, France, August
22-25, 2016, Proceedings, pages 491–499, Cham, 2016. Springer In-
ternational Publishing. doi:10.1007/978-3-319-43144-4_32.

[144] Amokrane Saibi. Outils Génériques de Modélisation et de Démonstra-
tion pour la Formalisation des Mathématiques en Théorie des Types:
application à la Théorie des Catégories. PhD thesis, Université Paris
VI, Paris, France, 1999.

[145] Daniel Selsam and Leonardo de Moura. Congruence closure
in intensional type theory. In Nicola Olivetti and Ashish Ti-
wari, editors, Automated Reasoning: 8th International Joint Con-
ference, IJCAR 2016, pages 99–115, Cham, 2016. Springer In-
ternational Publishing. URL: http://dx.doi.org/10.1007/
978-3-319-40229-1_8, doi:10.1007/978-3-319-40229-1_8.

[146] Daniel Selsam, Percy Liang, and David L. Dill. Developing
bug-free machine learning systems with formal mathematics.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3047–3056. PMLR,
06–11 Aug 2017. URL: http://proceedings.mlr.press/v70/
selsam17a.html.

[147] Matthieu Sozeau. Equations: A dependent pattern-matching
compiler. In Matt Kaufmann and Lawrence C. Paulson, editors,

http://github.com/uwplse/PUMPKIN-git
http://drops.dagstuhl.de/opus/volltexte/2019/11081
http://drops.dagstuhl.de/opus/volltexte/2019/11081
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.26
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.26
http://dx.doi.org/10.1007/978-3-319-43144-4_32
http://dx.doi.org/10.1007/978-3-319-40229-1_8
http://dx.doi.org/10.1007/978-3-319-40229-1_8
http://dx.doi.org/10.1007/978-3-319-40229-1_8
http://proceedings.mlr.press/v70/selsam17a.html
http://proceedings.mlr.press/v70/selsam17a.html

146 Bibliography

Interactive Theorem Proving, pages 419–434, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[148] Matthieu Sozeau and Nicolas Oury. First-class type classes.
In Theorem Proving in Higher Order Logics: 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings, pages 278–293, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-71067-7_23.

[149] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah,
and Stephanie Weirich. hs-to-coq. https://github.com/
antalsz/hs-to-coq, 2018-2021. Accessed: 2019-03-12.

[150] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equiv-
alences for free: Univalent parametricity for effective trans-
port. Proc. ACM Program. Lang., 2(ICFP):92:1–92:29, July
2018. URL: http://doi.acm.org/10.1145/3236787, doi:10.
1145/3236787.

[151] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. The mar-
riage of univalence and parametricity. Journal of the ACM,
68(1):5:1–5:44, January 2021. doi:https://doi.org/10.1145/
3429979.

[152] Shin Hwei Tan and Abhik Roychoudhury. Relifix: Automated
repair of software regressions. In Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1, ICSE ’15,
pages 471–482, Piscataway, NJ, USA, 2015. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=2818754.2818813.

[153] Amin Timany and Bart Jacobs. First steps towards cumulative
inductive types in CIC. In ICTAC, 2015.

[154] Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. Institute for Advanced Study,
2013. URL: https://homotopytypetheory.org/book.

[155] Paul Van Der Walt and Wouter Swierstra. Engineering proof
by reflection in Agda. In Symposium on Implementation and Ap-
plication of Functional Languages, pages 157–173. Springer, 2012.
doi:10.1007/978-3-642-41582-1_10.

[156] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of pro-
grams with contracts. In Proceedings of the 19th International Sym-
posium on Software Testing and Analysis, ISSTA ’10, pages 61–72,
New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/
10.1145/1831708.1831716, doi:10.1145/1831708.1831716.

http://dx.doi.org/10.1007/978-3-540-71067-7_23
https://github.com/antalsz/hs-to-coq
https://github.com/antalsz/hs-to-coq
http://doi.acm.org/10.1145/3236787
http://dx.doi.org/10.1145/3236787
http://dx.doi.org/10.1145/3236787
http://dx.doi.org/https://doi.org/10.1145/3429979
http://dx.doi.org/https://doi.org/10.1145/3429979
http://dl.acm.org/citation.cfm?id=2818754.2818813
https://homotopytypetheory.org/book
http://dx.doi.org/10.1007/978-3-642-41582-1_10
http://doi.acm.org/10.1145/1831708.1831716
http://doi.acm.org/10.1145/1831708.1831716
http://dx.doi.org/10.1145/1831708.1831716

Bibliography 147

[157] Makarius Wenzel. Isabelle/Isar–a generic framework for human-
readable proof documents. From Insight to Proof–Festschrift in
Honour of Andrzej Trybulec, 10(23):277–298, 2007.

[158] Makarius Wenzel. PIDE as front-end technology for Coq. CoRR,
abs/1304.6626, 2013. arXiv:1304.6626.

[159] Makarius Wenzel. Shared-memory multiprocessing for inter-
active theorem proving. In Interactive Theorem Proving: 4th In-
ternational Conference, ITP 2013, Rennes, France, July 22-26, 2013.
Proceedings, pages 418–434, Berlin, Heidelberg, 2013. Springer.
doi:10.1007/978-3-642-39634-2_30.

[160] Makarius Wenzel. Asynchronous user interaction and tool inte-
gration in Isabelle/PIDE. In Interactive Theorem Proving: 5th In-
ternational Conference, ITP 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
pages 515–530, Cham, 2014. Springer International Publishing.
doi:10.1007/978-3-319-08970-6_33.

[161] Makarius Wenzel. Scaling Isabelle proof document process-
ing, December 2017. URL: http://sketis.net/wp-content/
uploads/2017/12/Isabelle_Scaling_Dec-2017.pdf.

[162] Makarius Wenzel. Further scaling of Isabelle technology, April
2018. URL: https://files.sketis.net/Isabelle_Workshop_
2018/Isabelle_2018_paper_1.pdf.

[163] Markus Wenzel. Isar — a generic interpretative approach to
readable formal proof documents. In Theorem Proving in Higher
Order Logics, pages 167–183, Berlin, Heidelberg, 1999. Springer.
doi:10.1007/3-540-48256-3_12.

[164] Iain Johnston Whiteside. Refactoring proofs. PhD thesis, Univer-
sity of Edinburgh, November 2013. URL: http://hdl.handle.
net/1842/7970.

[165] Karin Wibergh. Automatic refactoring for Agda. Master’s thesis,
Chalmers University of Technology and University of Gothen-
burg, 2019.

[166] Ambre Williams. Refactoring functional programs with ornaments.
PhD thesis, 2020.

[167] Thomas Williams and Didier Rémy. A principled approach to
ornamentation in ML. Proc. ACM Program. Lang., 2(POPL):21:1–
21:30, December 2017. doi:10.1145/3158109.

[168] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock,
Michael D. Ernst, and Thomas Anderson. Planning for change in
a formal verification of the raft consensus protocol. In Proceedings

http://arxiv.org/abs/1304.6626
http://dx.doi.org/10.1007/978-3-642-39634-2_30
http://dx.doi.org/10.1007/978-3-319-08970-6_33
http://sketis.net/wp-content/uploads/2017/12/Isabelle_Scaling_Dec-2017.pdf
http://sketis.net/wp-content/uploads/2017/12/Isabelle_Scaling_Dec-2017.pdf
https://files.sketis.net/Isabelle_Workshop_2018/Isabelle_2018_paper_1.pdf
https://files.sketis.net/Isabelle_Workshop_2018/Isabelle_2018_paper_1.pdf
http://dx.doi.org/10.1007/3-540-48256-3_12
http://hdl.handle.net/1842/7970
http://hdl.handle.net/1842/7970
http://dx.doi.org/10.1145/3158109

148 Bibliography

of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2016, pages 154–165, New York, NY, USA, 2016.
ACM. URL: http://doi.acm.org/10.1145/2854065.2854081,
doi:10.1145/2854065.2854081.

[169] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement,
Sebastian Lamelas Marcote, Thomas Durieux, Daniel Le Berre,
and Martin Monperrus. Nopol: Automatic repair of condi-
tional statement bugs in Java programs. IEEE Trans. Softw. Eng.,
43(1):34–55, January 2017. URL: https://doi.org/10.1109/TSE.
2016.2560811, doi:10.1109/TSE.2016.2560811.

[170] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding
and understanding bugs in C compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, pages 283–294, New York, NY,
USA, 2011. ACM. doi:10.1145/1993498.1993532.

[171] Tianyi Zhang and Miryung Kim. Automated transplantation
and differential testing for clones. In Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, pages
665–676, Piscataway, NJ, USA, 2017. IEEE Press. URL: https://
doi.org/10.1109/ICSE.2017.67, doi:10.1109/ICSE.2017.67.

http://doi.acm.org/10.1145/2854065.2854081
http://dx.doi.org/10.1145/2854065.2854081
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
http://dx.doi.org/10.1109/TSE.2016.2560811
http://dx.doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/ICSE.2017.67
https://doi.org/10.1109/ICSE.2017.67
http://dx.doi.org/10.1109/ICSE.2017.67

	Abstract
	Dedication
	Contents
	Acknowledgments
	Introduction
	Developing Verified Systems
	Thesis
	Approach
	Results
	Reading Guide

	Motivating Proof Repair
	Proof Development
	Proof Maintenance
	Proof Repair

	Proof Repair by Example
	Motivating Example
	Approach
	Differencing
	Transformation
	Implementation
	Results
	Conclusion

	Proof Repair Across Type Equivalences
	Motivating Example
	Approach
	Differencing
	Transformation
	Implementation
	Results
	Conclusion

	Related Work
	Proof Engineering
	Program Repair

	Conclusions & Future Work
	Future Work: Patching the Gaps of Repair
	The Next Era: Proof Engineering for All

